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Abstract— A statistical analysis of the separability of EEG 
A-phases, with respect to basal activity, is presented in this 
study. A-phases are short central events that build up the 
Cyclic Alternating Pattern (CAP) during sleep. The CAP is a 
brain phenomenon which is thought to be related to the 
construction, destruction and instability of sleep stages 
dynamics. From the EEG signals, segments obtained around 
the onset and offset of the A-phases were used to evaluate the 
separability between A-phases and basal sleep stage 
oscillations. In addition, a classifier was trained to separate the 
different A-phase types (A1, A2 and A3). Temporal, energy and 
complexity measures were used as descriptors for the classifier. 
The results show a percentage of separation between onset and 
preceding basal oscillations higher than 85 % for all A-phases 
types.  For Offset separation from following baseline, the 
accuracy is higher than 80 % but specificity is around 75%. 
Concerning to A-phase type separation, A1-phase and A3-
phase are well separated with accuracy higher than 80, while 
A1 and A2-phases show a separation lower than 50%. These 
results encourage the design of automatic classifiers for Onset 
detection and for separating among A-phases type A1 and A3. 
On the other hand, the A-phase Offsets present a smooth 
transition towards the basal sleep stage oscillations, and A2-
phases are very similar to A1-phases, suggesting that a high 
uncertainty may exist during CAP annotation. 
 

I. INTRODUCTION 

Analysis and interpretation of the cerebral information 
during sleep is an important task in clinics, as many 
pathologies and social problems are associated to sleep 
problems [1].  Sleep apnea, insomnia and metabolic 
syndrome are among the most common pathologies, which, 
in addition to social problems are correlated to sleepiness, 
tiredness, and lack of concentration produced by a low sleep 
quality [1].  

The standard procedure to evaluate sleep is the 
polysomnography (PSG). The PSG consists in the recording 
of electroencephalogram (EEG), electrooculogram and 
electromyogram. This information is mainly used to evaluate 
the sleep stages (wake, 1-4 and REM). In addition, more 
signals such as electrocardiogram, airflow and pulsioxymetry 
are used to assess some pathologies [1]. Four decades ago, 
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Terzano et al. [2] observed and organized new information on 
the structure of the brain activity during normal and 
pathologic sleep. This structure consists in short cerebral 
oscillations that break the basal EEG rhythms of the sleep 
stages. Those oscillations are called A-phases and last 
between 2s and 60s.  Fig. 1 shows an example of EEG signal 
during approximately 60 seconds of stage 2 sleep. The 
dashed line shows the A2-phases that are observed during 
this EEG segment. One can observe that there exist changes 
in frequency and amplitude of the EEG during each A-phase. 

A-phases are classified in three groups based on the 
observed frequency information: 

• A1-phase. It is characterized by bursts and k-
complexes of Delta waves (0.5 Hz - 4 Hz). 

• A2-phase. It has rapid EEG waves that cover 
between 20% and 50% of the A-phase duration 

• A3-phase. It is characterized by Alpha (8 Hz - 
12 Hz) and Beta waves (12 Hz - 30 Hz), which 
cover more than 50% of the A-phase duration.  

The standard procedure to annotate A-phases, from an 
EEG recording, is by visual inspection; however, there exists 
a high inter-scorer variability [3]. In order to reduce the 
scoring time and to alleviate the inter-scorer variability, some 
studies have presented interesting automatic algorithms with 
good performance [4-5]. Their main focus is in detecting A-
phases based on changes of EEG characteristics. However, 
most of them need improvement localizing the onset and 
offset of the A-phase. In addition, it is interesting to analyze 
the feasibility of automatically discriminating between the 
three types of A-phases, as defined by an expert physician. 
Such a study may also help to understand the extent of the 
overlap between the fingerprints of different types of A-
phases.   

The goal of the study is to evaluate the feasibility in 
separating the Onset and Offset of the A-phases with respect 
to the basal oscillations of the non-REM (NREM) sleep 
stages, and evaluate the separability of the different A-phase 
types in healthy subjects. The separability is measured based 
on the performance of the k-Nearest Neighbors (kNN) 
algorithm [6]. This algorithm is fed with statistical, 
complexity and frequency information obtained from the 
EEG signal during the NREM sleep basal oscillation and the 
A-phases. 
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Fig. 1 EEG segment during the sleep phase 2. Dashed line shows A2-

phases. 

II. METHODOLOGY 

A. Protocol 
 
Five healthy adult subjects, 2 males and 3 females, of ages 
between 25 and 45 years (mean 32.7 yrs) underwent the 
study. The sleep polysomnographic recordings were 
acquired and annotated at the Parma University Sleep 
Disorders Center. Sleep analysis was carried out after one 
adaptation night.  Sleep stage annotations and CAP scoring 
were done by sleep experts, following the standard 
procedure of R&K rules (sleep stages every 30s) while CAP 
scoring was based on published guidelines [2]. A single 
unipolar EEG derivation per subject was used for this 
analysis, either C3-A2 or C4-A1. The signal was sampled at 
100 Hz, and bandpass-filtered at 0.3 Hz - 40 Hz. 
 

B. Segments and features for background and onset-offset 
separation 

 
For each A-phase defined by the expert, the following 

windows are compared: 1) 2s before the onset, 2) 2s after 
onset, 3) 2s before offset and 4) 2s after offset. In addition to 
the common types of A-phases, we separated the A1-phase in 
two types, thus finally we have the following groups: 1) A1-
phase during sleep stage 2, 2) A2-phase during NREM sleep 
3) A3-phase during  NREM sleep and 4) A1-phase during 
sleep stage 3-4.  Note that sleep stage 1 was not considered in 
this study due to its low occurrence. We can define the whole 
set as, 𝐶!,! = 𝑎!|𝑎!𝜖𝐴!  where i=1, 2, 3 and 4 represents the 
activation group and j=1, 2, 3 and 4 is the segment around 
the onset or offset. The duration of two seconds for each 
segment is selected due to the minimum duration of A-phases 
and the minimum separation between A-phases. A1-phase 
was separated in two groups since one can find many A1-
phases during light and deep sleep but the basal EEG 
oscillations are completely different between those sleep 
stages.  

For each segment: mode, standard deviation, skewness, 
kurtosis, energy and the power after spectral decomposition 
in 4 bands (Delta, Theta, Alpha and Beta) of the EEG were 
computed. In addition, complexity measurements are 
computed from the whole night EEG in sliding windows of 
4s with 2s of overlapping. The values of segments related to 
the C set are used as features. The complexity measurements 
were: Lempel-Ziv Complexity, Sample Entropy, Fractal 
Dimension and Tsallis Entropy. A total of 2211 A-phases are 
analyzed in the study with A1=519, A2=459, A3=372 and 
A4=881. 

 

C. Feature extraction for A-phase separation 
 

The same features, described in section II.B, are used for 
A-phase type separation. In addition to these features, A-
phase duration is also included. Note that the features are 
computed for the whole A-phase duration and here the A1-
phase group includes phases from sleep stages 1 and 3-4. 
Thus, we have 3 classes: A1, A2 and A3. 

 

D. Feature selection and classifier 
 

There are many methods to find the best decision 
boundary that separates two or more groups based on the 
their characteristics or features. Among the most used, we 
can find the k-Nearest Neighbors (kNN) algorithm. kNN  is 
used due to its simplicity and ability to find complex 
decision boundaries. 

The kNN computes the a posteriori probability that a 
sample 𝒙!"# ∈ ℝ!,(where n is the number of features) 
belongs to a group 𝑔!. This is evaluated based on the 
proportion data points belonging to 𝑔! from a sample 
consisting of the k data points closest to xnew: 

 
𝑃(𝑔!|𝑥!"#) =

!!
!

                        (1) 
 
i stands for the i-th group,  𝑘! ≤ 𝑘  is the number of data 
points (from the 𝑘 nearest neighbors) belonging to group 𝑔! 
 Feed-forward selection procedure with Leave-One-Out 
crossvalidation were used for feature selection and to choose 
the best k, where k={1,3, …, 27}. The procedure can be 
summarized as follows: for each subject, the feature vectors 
corresponding to the A-phases (pre-onset, post-onset, pre-
offset and post-offset) of that subject are classified using 
data from the other four subjects as training samples; 
accuracy, sensitivity and specificity measures were 
computed for each subject, and then averaged across all five 
subjects, in order to evaluate the overall performance of the 
classifier. This methodology is used to evaluate the 
separation between background activity and A-phases during 
both the onset and the offset of the A-phases, and also for A-
phase type classification. 
 

III. RESULTS 

Separability of A-phases among types and Onset-Offset 
with respect to the basal EEG oscillations is presented. The 
first part of the results focus in the Onset-Offset separability 
while the second part is about type separation.  

Several tests were performed using different 
combinations of features. Here we present the results 
obtained with the combination of proposed features that 
yielded the best performance. These features are: a) for onset-
offset A-phase separation, the most common features in the 
different groups were {standard deviation, Power in Delta 
bad, Lempel-Ziv complexity, TSA, Energy}, b) for 
separation among different A-phases type, the most common 
features were {Sample Entropy, standard deviation, Lempel-
Ziv complexity, Energy, Power in Beta band}. 
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A. Onset-Offset separation 
 

Table I shows the performance of the kNN algorithm in 
separating basal EEG oscillations and Onset A-phase. A1-
phase during sleep stage 2 shows the best results: accuracy 
around 94% is achieved. The worst case is A1-phase during 
sleep stage 4, with accuracy close to 87%.  In addition, A1-
phase during sleep stage 4 shows a higher variance in the 
classification. 

The Offset A-phase separation with respect to the basal 
EEG oscillations is shown in Table II. Again, the best case is 
obtained for A1-phase during sleep stage 2 with accuracy 
around 87 %. The worst case in found for A3-phase, with 
accuracy close to 80%. We can observe that for all groups 
specificity is lower than sensitivity by 15%. 

B. A-phase Classification 
 
Table III shows the performance of the kNN algorithm 
among A-phase type separation. The results achieve values 
higher than 85 % for sensitivity and accuracy while the 
specificity is slightly lower than 75%. Additionally, Table 
IV shows the confusion matrix for A-phase type separation. 
This matrix allows observing how the errors are distributed 
at the different classes. While A1-phase is well classified by 
the algorithm, with a percentage close to 90 %,. The worst 
scenario is obtained for A2-phase, since 46 % of the A2-
phases annotated by the expert are classified as A1-phase by 
the algorithm. Finally, 15 % of A3-phases are misclassified 
as A2-phase. 

 

TABLE I.  SEPARATION BETWEEN BACKGROUND AND A-PHASE 
DURING ONSET  

kNN(k,#features) 
Performance (mean +/- sd) 

Sensitivity 
(%) Specificity (%) Accuracy (%) 

A1 - kNN(11,5) 95 +/- 0.85 90 +/- 1.71 94 +/- 1.14 

A2 - kNN(11,5) 95 +/- 1.13 90 +/- 2.27 93 +/- 1.51 

A3 - kNN(11,5) 92 +/- 1.85 84 +/- 3.69 89 +/- 2.46 

A4 - kNN(11,5) 90 +/- 2.23 80 +/- 4.45 87 +/- 2.97 

 

TABLE II.  SEPARATION BETWEEN BACKGROUND AND A-PHASE 
DURING OFFSET 

kNN(k,#features) 
Performance (mean +/- sd) 

Sensitivity (%) Specificity (%) Accuracy (%) 

A1 - kNN(13,5) 90 +/- 2.52 81 +/- 5.05 87 +/- 3.37 

A2 - kNN(13,5) 88 +/- 2.70 76 +/- 5.40 84 +/- 3.60 

A3 - kNN(13,5) 85 +/- 2.04 71 +/- 4.08 80 +/- 2.72 

A4 - kNN(13,5) 86 +/- 3.83 73 +/- 7.65 82 +/- 5.10 

 

 

 

TABLE III.  SEPARATION AMONG A-PHASE TYPE 

 
Performance (mean) 

Sensitivity (%) Specificity (%) Accuracy (%) 

kNN 87.12 74.24 82.23 

 

TABLE IV.  CONFUSION MATRIX FOR A-PHASE TYPE 

 
Expert vs Automatic (%) 

A1 A2 A3 

A1 89.64 9.78 0.58 

A2 46.07 42.70 11.24 

A3 4.37 15.78 79.85 

 

IV. DISCUSSION 

An analysis of the separation between Onset-Offset of A-
phases and basal oscillation of the sleep stages, as well as the 
separation among A-phases types during sleep was presented. 
The separation assessment is based on the kNN algorithm 
using as features statistical, complexity, and spectral 
measures. Our main observations are: a) The separability 
between the basal sleep stages oscillations and Onset-Offset 
A-phase, based on a binary classifier, is similar to the inter-
scorer agreement, b) A2-phases present characteristics 
similar to A1-phases, thus they can be easily confounded. 

Inter-scorer agreement in locating the A-phases is around 
75% [3]. This suggests a 25% of uncertainty in the 
information observed from the EEG signal to identify the A-
phase events. In our analysis, we obtain 80 % of separability 
between Onset-Offset of the A-phases and the basal sleep 
stages oscillation. This suggests that features obtained from 
the EEG signal do not allow a full separation or identification 
of the A-phases, but the results are close to the human 
perception. Clearly, it will be interesting to repeat this test 
with two or more scorers, and evaluate whether the 
intersection of two scorers is in agreement with the Onset-
Offset A-phases that we can correctly separate, this may 
suggest, the 100 % of the separation could be found by the 
presented methodology. This would confirm that exist 25 % 
of subjectivity and uncertainty in the perception of the A-
phase activations. In this way, we could define a 
mathematical model that could give a practical and 
computational definition of A-phase.  

From Table I and II, we can appreciate that Offset 
separation is a complex task. There exists lower performance 
and a higher variance in all cases as compared to the Onset 
case. Those results are expected, since the transition from the 
A-phase to the basal activity during the Offset is relatively 
slow and smooth, in contrast to the abrupt amplitude and 
frequency changes that can be observed during the A-phase 
Onset. 

On the other hand, A-phases types are mainly defined in 
terms of the frequency content and amplitude of the EEG 
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signal with respect to the basal EEG oscillations that are 
present during a specific sleep stage.  As can be appreciated 
from Table IV, A3-phases seem to be well defined and could 
be classified with acceptable accuracy. However, A2-phases 
present characteristics or features similar to A1-phases, since 
a large percentage ( > 40 %) of A2-phases are incorrectly 
classified as A1-phases. This suggests that a deep study is 
required to understand how to quantify other features that the 
experts observe, which may not be explicitly defined in the 
guidelines. On the other hand, while it is possible to apply 
dimensionality reduction techniques, such as PCA or LDA, to 
improve the classifier’s accuracy, we have decided to focus 
in a set of features with direct interpretation from a 
physiological point of view, which may yield useful 
information about the human perception.  

Finally, this study presents some limitations. The number 
of subjects is small and it is necessary to increase the 
population to obtain results with a higher confidence. The 
CAP scoring used in the study was performed by a single 
scorer. It could be useful obtain the scoring from other 
experts. Simple classifiers such as linear or quadratic 
discriminants could be more suitable for this study, since they 
typically provide more general models which may also yield 
insight about the neurological mechanisms behind CAP 
sleep. 

V. CONCLUSION 
Sleep A-phase Onset seems to be the key for separating 

the basal sleep stage oscillations from the A-phases, while 
the A-phase Offset detection resulted to be a more difficult 
task. To alleviate this problem, a mathematical model of the 
A-phase decay could be useful to reduce the uncertainty and 
improve the transition state detection.  In addition, A2-phase 
characteristics presented a large overlapping with A1-
phases. For this reason, the kNN classifier was unable to 
consistently discriminate between both types. Thus, it is a 
necessary next step to include new features with 
discriminatory power to improve the results. 
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