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 8 
Abstract 9 

Inverse methods can be used to recover the pollutant source location from concentration data. In this paper, the relative 10 

effectiveness of two proposed methods, simultaneous release function and source location identification (SRSI) and 11 

backward probability model based on adjoint state method (BPM-ASM) are evaluated using real data collected by using 12 

experimental equipment. The device is a sandbox that reproduces an unconfined aquifer in which all the variables are 13 

controlled. A numerical model was calibrated using experimental observations. The SRSI is a stochastic procedure 14 

which finds the source location and the release history by means of a Bayesian geostatistical approach. The BPM-ASM 15 

provides the backward probability location of the pollutant detected at a monitoring point by means of a reverse 16 

transport simulation. The results show that both methods perform well. While the simultaneous release function and 17 

source location identification method requires a preliminary delineation of a probable source area and some weak 18 

hypotheses about the statistical structure of the unknown release function, the backward probability model requires 19 

some hypothesis about the contaminant release time. A case study was performed using two observation points only, 20 

and despite the scarcity of data, both methodologies were able to accurately reconstruct the true source location. The 21 

geostatistical approach has the advantage to recover the release history function too, whilst the backward probability 22 

model works well with fewer data. If there are many observations, both methodologies may be computationally heavy. 23 

A transfer function approach has been adopted for the numerical definition of the sensitivity matrix in the SRSI method. 24 

The reliability of the experimental equipment was tested in previous laboratory works, conducted under several 25 

different conditions. 26 

Keywords: Geostatistical approach; Transfer function; Source detection; Backward Location PDF; Sandbox 27 

List of symbols 28 

b p1 unknown coefficients 29 

C(x,t) concentration at point x and time t 30 

C0 solution concentration 31 

iĈ  observed concentration 32 

Cw initial condition in backward model 33 

D dispersion tensor 34 

F (t) concentration of the water injected at the source as function of time t 35 

F0 constant and known mass rate input function 36 
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iC
f ˆ  measured concentrations PDF 37 

f(x,t) transfer function at position x and time t 38 

fX(x,t) backward location PDF 39 

H mn sensitivity matrix 40 

h(s) m1 vector that describes the transport process 41 

HL(x,t) load term 42 

HSF(t) Heaviside step function 43 

hD head level downstream 44 

hU head level upstream 45 

J generic sub-areas 46 

K hydraulic conductivity 47 

m number of observations 48 

mo release source mass 49 

M random source mass 50 

M pn multipliers 51 

n number of unknowns 52 

n normal versor 53 

p number of unknown coefficients 54 

Q() nn matrix, covariance of the unknown process 55 

Qin injected flow rate 56 

Qw initial condition in backward model 57 

q0 injected solution discharge 58 

Iq source inflow rate per unit volume 59 

R mm error covariance matrix 60 

s n1 unknowns 61 

s(t) unknown release function 62 

s~  transformed unknown function 63 

ŝ  n1 vector of estimated release function 64 

t time 65 

t  sampling time 66 

tstart starting time 67 

tend ending time 68 

u velocity tensor 69 

v m1 measurement errors 70 

V nn matrix, covariance of the estimate of the errors 71 

x position in the domain 72 

x0 source location 73 

xinj longitudinal coordinate of injector 74 

X0 random source location 75 
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X np matrix, mean of the unknown process 76 

xw observation location 77 

z m1 observations 78 

zinj vertical coordinate of injector 79 

 positive number 80 

L longitudinal dipersivity 81 

T transversal dispersivity 82 

x  normalization factor 83 

Γi boundaries 84 

δ Dirac delta function 85 

Δt numerical model time step 86 

Δx longitudinal size of numerical cell grid 87 

Δy transversal size of numerical cell grid 88 

Δz vertical size of numerical cell grid 89 

εi ith measurement error 90 

 time 91 

 structural parameters of the covariance function 92 

s correlation time length of the unknown release function s(t) 93 

 nm Kriging coefficients 94 

 mm dummy matrix 95 

2
R variance of the measurement error 96 

2
S variance of the unknown release function s(t) 97 

 mm dummy matrix 98 

τ backward time 99 

τw backward sampling time 100 

φ porosity 101 

ψ* adjoint state 102 

 Nabla operator 103 

1 Introduction 104 

Source identification and recovery of the pollutant release history in groundwater have received much attention in 105 

recent years. The identification of a source location could allow to identify the true cause of the contamination and to 106 

foresee the future pollution spread, while the release time, the duration, and the maximum value of the released solute 107 

concentration could allow to apportion remediation costs among the responsible parties. 108 

The problems in recovering the release history and/or the source location were studied extensively in the past. In this 109 

paper two different approaches are compared with respect to the same test case: simultaneous release function and 110 

source location (in short SRSI) (Butera et al. 2013), and backward location model based on adjoint state method (briefly 111 

BPM-ASM) (Neupauer and Wilson 1999). Both methodologies were tested on experimental data collected in a 112 

laboratory sandbox that reproduces an unconfined aquifer (for details see Citarella et al. 2010). This allows to validate 113 
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the methodologies in a real test case in which all variables are measured and controlled. This is the first time that a well-114 

known experimental dataset has been used to test and validate these procedures. 115 

The first method, developed by Butera et al. (2013), is based on the geostatistical approach proposed by Snodgrass and 116 

Kitanidis (1997) for the one-dimensional uniform flow. Several improvements and applications of the geostatistical 117 

methodology were proposed by Michalak and Kitanidis 2002, 2003, 2004a, 2004b, and by Butera and Tanda (2003) and 118 

Butera et al. (2006, 2013). Given the linearity of the governing differential equation, the approach uses the transfer 119 

functions (TFs) to describe the effect in time, at a certain location of the aquifer, of an impulse release of a pollutant at a 120 

known source. Although TFs can be analytically determined if the problem has a simple flow field, the characteristics 121 

of the groundwater flow field do not allow this solution in many practical applications. To overcome this difficulty, a 122 

numerical procedure to compute TFs was developed by Butera et al. (2004) and applied to homogeneous and weakly 123 

heterogeneous aquifers (Butera at al. 2006). The source identification procedure requires a preliminary delineation of an 124 

area where the pollutant source is most likely to be present, but it allows to obtain the simultaneous identification of the 125 

release history and the source location. An application of this methodology, in a complex real case study, was 126 

implemented by Gzyl at al. (2014). 127 

The second methodology was developed by Neupauer and Wilson (1999, 2001). In their works, these authors showed 128 

that the backward location and travel time probability density functions (PDF) are related to adjoint states of 129 

concentration, and they developed a technique for obtaining the governing equation of the backward model using the 130 

adjoint theory. The backward location PDF describes the possible former positions of the observed contamination at a 131 

certain time before the detection, while the backward travel time PDF describes the possible travel time of the 132 

contaminant from a selected upgradient position to the observation location. By using an adjoint model, an 133 

instantaneous point source of an adjoint state (related to the PDFs) is released at the observation location at an observed 134 

time. The adjoint state is thus transported upgradient and backward in time, following the same processes that occur in 135 

forward contaminant transport modeling. The resulting spatial distribution of the concentration in the domain is related 136 

to the backward location PDF. The work by Neupauer and Wilson (1999, 2001) was improved by considering non-137 

uniform flow field (Neupauer and Wilson 2002), sorbing solutes (Neupauer and Wilson 2004a, 2004b, 2009), multiple 138 

observations (Neupauer and Wilson 2005), measured concentration (Neupauer and Lin 2006), and sorption and decay 139 

phenomena (Neupauer et al. 2007). By using a previously calibrated numerical model, the single-observation and 140 

multiple-observation backward location PDF can be computed. This PDF was then conditioned on the concentration 141 

measurement, by reducing the variance of the backward location PDF and improving the results. However, this 142 

methodology was developed to manage plumes originated from a single instantaneous point source; nevertheless, it 143 

seems an interesting approach and in this work its performance has been tested on a continuous release source. 144 

The manuscript is organized in three parts: first, the mathematical statements concerning the two approaches are 145 

presented, then a brief description of the experimental equipment is reported; finally, the results of the application of the 146 

two methodologies are presented and discussed. 147 

2 Mathematical Statements 148 

2.1 Groundwater Transport 149 

Equation (1) describes the transport process in an aquifer corresponding to the injection of a non-sorbing, non-reactive 150 

solute in a point source (Bear and Verruijt 1987): 151 

( )( )
( ) ( )  ( ) ( )  ( ) )(,,,,

,
00 xxxxxuxxD

x
−+−=




 tstCttC

t

tC
  (1) 152 
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where:  [-] is the effective porosity (taken as spatially variable, but constant in time), u(x,t) [L·T-1] is the effective 153 

velocity at location x and time t, D(x) [L2 T-1] the dispersion tensor, C(x,t) [M·L-3] the concentration at location x and 154 

time t, s(x0,t)=C0(x0,t)q0(x0,t) [M·T-1] is the amount of pollutant per time unit injected into the aquifer through the 155 

source located at 
0

x , C0(x0,t) is the concentration injected and q0(x0,t) [L3·T-1] is the injection flow rate at x0 at time t 156 

[T]. 157 

The solution of Equation (1), by considering uniform porosity, when associated with the initial and boundary 158 

conditions: C(x,0) = 0; C(∞,t) = 0, is given by the following integral (Jury and Roth 1990): 159 

( ) ( ) −=

t

dtfstC

0

),(,,  xxx 0   (2) 160 

where f(x,t-) [L-3] is the transfer function (TF) that describes the effects at x at time t by an impulse injection occurring 161 

at x0 at time  [T]. 162 

2.2 Geostatistical approach 163 

The source position was estimated through the procedure developed by Butera et al. (2013). The method, called 164 

simultaneous release function and source location identification (SRSI), allows to identify not only the source position 165 

but also its release history in time. 166 

The SRSI procedure can be summarized with the following steps: 167 

• collect a set of concentration measurements in space and/or time; 168 

• delineate the suspect area (SA) for the source location and discretize it into J sub-areas assuming the origin of 169 

the possible sources in the centroid of any sub-area; 170 

• compute the transfer functions at the monitoring points for each possible source (J runs of the numerical 171 

transport model); 172 

• recover the release histories performing the geostatistical procedure which simultaneously considers all the 173 

possible point sources (superposition effect) by means of ( ) ( ) ( )
=

−=

J

j

t

jj dtfstC

1 0

,,  xx  where j is one of 174 

J generic sub-areas within the SA; 175 

• identify the source location as the location from which the highest amount of released pollutant is estimated. 176 

TFs can be determined easily in simple flow conditions (such as homogeneous and isotropic porous media in absence of 177 

interferences) by means of analytical formulations (Bear and Verruijt 1987). When considering a non-uniform flow 178 

field (for instance, heterogeneous porous media, or presence of a withdrawal) it is necessary to develop numerical 179 

strategies. Butera et al. (2006, 2013) developed the Stepwise Input Function procedure (SIF) for TF calculation. The 180 

procedure basically consists in making the time derivative of equation (2) by considering a constant and known input 181 

function ( ) ( )tHFts SF= 00 ,x , where HSF(t) is the Heaviside step function and F0=C0q0 is the amount of pollutant 182 

injected into the aquifer with constant and known concentration C0 at flow rate q0. 183 

The TF results in: 184 

( )
( )
t

tC

F
tf




=

,1
,

0

x
x   (3) 185 
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Equation (3), coupled with a numerical flow and transport model known from calibration or expert elicitation, allows to 186 

easily determine the TFs at a generic point x by processing the concentration history (breakthrough curve) at the same 187 

location due to a stepwise tracer injection at x0. 188 

The core of the method is the quasilinear geostatistical approach developed by Kitanidis (1995, 1996) and Snodgrass 189 

and Kitanidis (1997), which is briefly summarized in the following. 190 

The observed concentration data at a known time t  can be expressed as a function of the release process by the 191 

following equation: 192 

( ) vshz +=   (4) 193 

where z is a m1 vector of observations, h(s) is the n1 vector containing the time discretization of the unknown release 194 

function s(t) and v is a m1 vector of epistemic errors with zero mean and known covariance matrix IR = 2
R . 195 

In the case of a conservative solute, the relationship between the observed concentration and the release is linear, and 196 

equation (4) can be simplified to (Snodgrass and Kitanidis, 1997): 197 

vsHz +=   (5) 198 

Equation (5) represents the matrix form of equation (2), where matrix H contains the values of the TFs (f), computed at 199 

appropriate times and locations: 200 

( ) ( )
( ) ( )

( ) ( )


















−−

−−

−−

=

tntfttf

tntfttf

tntfttf

t

mm ,...,

.........

,...,

,...,

22

11

xx

xx

xx

H  (6) 201 

The transfer matrix H includes all the characteristics of the flow and transport processes. Vector s can be considered 202 

random and characterized by an unknown mean E[s]=Xb and a covariance function Q() = E[(s-Xb)(s-Xb)T], where 203 

E[] denotes the expected value, X is a np matrix of known functions, b is a vector of size p1 that contains the 204 

unknown drift coefficients and  are the unknown structural parameters. In this work, a constant but unknown mean is 205 

considered; thus X is an n1 vector filled by 1 and b is the scalar unknown mean of the function; moreover a Gaussian 206 

covariance function has been considered, so  are the variance 2

s and the correlation time length s. 207 

The estimation procedure proposed by Kitanidis (1995) is divided into two parts: first the structural parameters  of the 208 

selected covariance function are determined, then the unknown release function is estimated by means of a Kriging 209 

process. The identification of the structural parameters follows a Restricted Maximum Likelihood approach. The 210 

probability that the random process with parameter  reproduces observation z can be estimated through the following: 211 









− −

−
−−

zzHXHXθ|z
1

2/1
12/1

2

1
exp)( TTTp   (7) 212 

where RHQH += T
 and ( ) 11111 −−−−− −= TTTT

HXHXHXHX . 213 

Once the structural parameters are computed, by maximizing the probability (Eq. (7)), estimation ŝ of the release 214 

function s(t) is obtained through Kriging: 215 

zs =ˆ   (8) 216 
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where matrix  (nm) of the Kriging weights is calculated by solving the following system obtained from the un-217 

biasedness and minimum variance conditions: 218 

( ) 







=
















T

T

T
X

HQ

M

Λ

0HX

HXΣ
  (9) 219 

In equation (9), M (pm) is a matrix of Lagrange multipliers. The covariance matrix of the estimation error is: 220 

TT
ΛQHQXMV −+−=   (10) 221 

A transformation (Box and Cox 1964) of variable s was considered in order to enforce non-negativity of the estimated 222 

concentration; the new unknown becomes: 223 

( )11/ −=  ss~   (11) 224 

where  is a positive number and is chosen as small as possible while ensuring −s~ . 225 

When the values of s are constrained to be positive and are physically compatible, equation (4) becomes: 226 

( ) vshv
s

HvsHz +=+






 +
=+= ~

~ 




 (12) 227 

In this case, )~(sh  is not linear with respect to the new unknown s~ and the solution is reached iteratively (for details see 228 

Kitanidis 1995, 1996). 229 

For the SRSI procedure, vector s of the unknown release function in (4) is made up by the collection of J sub-vectors sj, 230 

each with dimensions ni×1, where ni is the number of time values used to discretize the release history. The total 231 

dimension of s is: (n1+ n2+….+ nJ) ×1: 232 



















=

Js

s

s

s
...

2

1

  (13) 233 

The transfer matrix H is a block matrix 234 

 
J21

........ HHHH =   (14) 235 

whose dimensions are m(n1+ n2+….+ nJ). The generic matrix Hj describes the effects of the pollutant release in the 236 

sub-area j on the concentration data measured at the m monitoring points. The release history of each source location is 237 

assumed to be independent of the others. For this reason covariance matrix Q of the s process is a block matrix with 238 

non-zero elements in diagonal blocks only. 239 



















=

J

1

...

Q

Q

Q

Q

000

000

000

000

2
 (15) 240 

The results of the geostatistical procedure described in this section provide the pollutant history in the J hypothetical 241 

source locations. The release function in the real source will be substantial, while in the other suspect locations the time 242 

histories will be negligible. 243 

2.3 Backward probability model based on adjoint state method (BPM-ASM) 244 
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The use of backward location probability density function to identify the source location is briefly explained in the 245 

following. This approach was developed (Neupauer and Wilson 1999) only for an instantaneous point source and it is 246 

assumed that release time τ is known. To calculate backward location PDF a numerical model calibrated on the 247 

experimental data is often necessary. So, every observation point needs to be considered as an instantaneous source in 248 

the adjoint equation. The adjoint equations can be solved with the same flow and transport software used in forward 249 

simulation, on a domain with modified boundary conditions that produce reverse flow direction. In the test case 250 

explained in the following, one independent backward simulation (flow and transport) for each observation point was 251 

performed. The initial condition was 252 

( )
tQ

C
w

ww


=
1

0,x  (16) 253 

where xw is the position of the observation point, considered now as source, wQ  [L3T-1] is the instantaneous discharge 254 

of tracer solution injected, negligible compared to the background flow, and t  [T] is the time step length. So the mass 255 

injected in the single time step, is  256 

1== tQCM wwinjected  (17) 257 

The evolution of the plume in the backward model provides the backward location PDF and represents the probability 258 

that the contaminant exists at that location and given backward time. 259 

2.3.1 Single-Observation Backward Location PDF 260 

For more details see Neupauer and Wilson (1999, 2002, 2003, 2004b). Let us consider the advection dispersion 261 

equation (Eq. 1) with the following boundary and initial conditions: 262 

( ) ( )00
0

0, xxx −= 


m
tC  263 

( ) ( )tgtC 1, =x  on Γ1 264 

( )tg
x

tC

j
2

),(
=
















n

x
D  on Γ2   (18) 265 

  ( )tgtCtC 3),(),( =− nxDxu  on Γ3 266 

where C(x,t) is the concentration, D is the dispersion tensor, u is the effective velocity, t0 is the source release time, x0 is 267 

the source location, m0 [M] is the source mass, δ(·) is the Dirac delta function, gi(t) are known boundary functions, and 268 

Γi are the boundaries. 269 

The adjoint of the equation (1) is given by (Neupauer and Wilson 2002) 270 

( ) ( ) ( ) ( ) ( )



 ,***

*
xxxuD LwwI Hqψ +−−++=




 (19) 271 

( ) 00,* =x  272 

( ) 0,* = x  on Γ1 273 

0*
*

=











+




nuD 



jx
 on Γ2 274 

0
*

=















nD

jx


 on Γ3 275 
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where Iq [T-1] is the source inflow rate per unit volume and *  [L-3] is an adjoint state that is also (Neupauer and 276 

Wilson 1999) the marginal sensitivity of the concentration to source mass. τ is the backward time, while xw and τw are 277 

the observation location and backward sampling time, respectively. By using samples taken at monitoring wells 278 

( )
( )

( ) ( )
( )

( ) ( ) ( )wx
L

x
L

L wwww
xxxx

u
xxxx

u
H 





 −












−−+−−= 2211

'2
2211

'1

21
,

xuxu
x  (20) 279 

where the sample location is ( )
ww

xxw 21 ,=x , ( )
wi iix xx −='  is the derivative of the Dirac delta function with respect to 280 

xi, vertical bars denote magnitude, and L [L] is the longitudinal dispersivity. 281 

The relationship between the adjoint state from (19) and the backward location probability density function is given by 282 

(Neupauer and Wilson 2002) 283 

( ) ( )wwwwf  ,,;*,,; xxxxx =  (21) 284 

where ( )wwf  ,,; xxx  is the backward location PDF concerning position x at backward time τ of a contaminant particle 285 

that was observed at xw at backward time τw, and * is the adjoint state obtained from (19). 286 

2.3.2 Multiple Observations Backward Location PDF 287 

If several observations are available, multiple-observation backward location density function (Neupauer and Wilson 288 

2005) can be obtained by first calculating the single-observation PDF for each observation, then combining them. Each 289 

observation gives additional information to characterize the former position of contamination, thereby reducing the 290 

uncertainty or variance of the backward location PDF. In this step only the presence of the pollutant at monitoring 291 

points is considered, and not the concentration values. Let N be the number of observations, and let {xw} and {τw} be N-292 

length vectors of sampling locations and backward sampling times, respectively. The multiple-observation backward 293 

location PDF,    ( )wwf  ,,; xxX , describes the possible former positions of all contaminant particles observed, given 294 

that at a previous time τ, they were at the same location, i.e. source location. It is calculated as 295 

   ( )
( )

( )



=

==
xxx

xx
xx

X

X

X

df

f
f

N

i wiwi

N

i wiwi

ww

1

1

,,;

,,;
,,;




  (22) 296 

where ( )wiwif  ,,; xxX  is the backward location PDF for the ith sample, obtained from (21). The sum of multiple-297 

observation backward location PDF, calculated on the whole domain, is equal to 1. An important aspect of this method 298 

is that only the presence or the absence of the pollutant is considered and the concentration values are not taken into 299 

account. 300 

2.3.3 Conditioned Backward Location PDF 301 

Neupauer and Lin (2006) improved the backward location probability density function conditioning on measured 302 

concentrations collected after an instantaneous release originated from a point source located in x0. 303 

In this case the source mass and the source location are unknown but the measured concentrations are known. Neupauer 304 

and Lin (2006) suggested using Bayes’ theorem with the aim of constraining source mass M and random source 305 

location x0 on the specific concentrations measured. 306 

Let ( )wiwii CC ,ˆˆ x= , i = 1, 2, …, N, the observed concentrations, where xwi is the location and τwi is the backward time 307 

at which sample i was taken. iĈ is considered as a random variable with true value ( ) ,,, 00 xmxC wiwi . So, εi is the 308 

error of the ith measurement and it is normally-distributed with zero mean and variance 2
i . Therefore measured 309 
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concentrations, iĈ are normally distributed with a mean equal to the true concentration and variance 2
R , and its PDF is 310 

given by 311 

( ) ( ) 












 −
−=

2

2

00

2
00ˆ

2

,,,ˆ
exp

2

1
,,ˆ

R

wiwii

R

iC

xmxCC
xmCf

i 




  (23) 312 

If εi is considered independent from any other, for a known source mass m0 and a source location x0, the joint PDF on 313 

all N measured concentrations is simply the product of the PDFs for the individual observations given by 314 
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Assuming that the source mass is independent of source location in the absence of any concentration information, the 316 

final result is (for more details see Neupauer and Lin 2006) 317 
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 (25) 318 

where ( );,ˆ
00,ˆ

0

xmCf iXMCi

 is the distribution of iĈ , calculated for each observation for a range of possible source 319 

masses and a range of possible source locations that includes the entire spatial domain of the model, ( )wiwif  ,,; xxX  is 320 

the unconditioned backward location probability density function and x  is a normalization factor. 321 

3 Test case 322 

3.1 Description of the experimental equipment 323 

The transport experiments were performed in a laboratory device (sandbox) built with polymethyl methacrylate 324 

(PMMA) plates. The sandbox reproduces an unconfined aquifer governed by two levels (upstream and downstream). 325 

The external dimensions of the sandbox are 1.20m × 0.14m × 0.73m. Along the longest axis x, the sandbox is made of 326 

three parts (Fig. 1): two tanks (upstream and downstream), which allow the regulation of the water level and, as a 327 

consequence, of the flux, and a central chamber (0.95 m × 0.10m × 0.70m) which contains the porous medium. The 328 

water discharge is monitored with a flow meter. The porous medium consists of glass beads with diameter in the range 329 

between 0.75 and 1 mm; the hydraulic parameters are summarized in Table 1. An injector was positioned in the 330 

upstream part of the sandbox (see Fig. 1), and fluorescein sodium salt was chosen as tracer because, when mixed with 331 

water and excited with blue light (λ = 490 nm), it irradiates in longer wavelength (green light, λ = 520 nm). The 332 

experimental device was placed in a darkroom to avoid all external light contamination and lightened by 8 333 

monochromatic blue LEDs. All variables, such as upstream and downstream level, injected discharge, temperature, 334 

background discharge, start and ending of injection, were acquired by means of a data acquisition system. The 335 

luminosity at each point of the sandbox was recorded by a digital camera and then converted in concentration through 336 

an imaging technique. The mass released by the injector and the one estimated through the image processing were 337 

compared to evaluate the reliability of data collected. Another confirmation of the validity of the data used was obtained 338 

by comparing the mass rate that flows through the sandbox with the known injected one. During the device calibration, 339 

the maximum measurement error of concentration R was estimated as less than 3 mg/l. A detailed description of the 340 

sandbox can be found in (Citarella et al. 2010). 341 

3.2 Description of the test 342 
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A tracer solution with variable mass rate was injected by using the experimental device described in the previous 343 

section. The average background flow rate was measured as 25 ml/s, obtained with upstream and downstream constant 344 

heads of 59.9 cm and 53.6 cm, respectively. The injector was located at the coordinates xinj= 14.25 cm, zinj = 32.75 cm, 345 

and it was as wide as the central chamber. 346 

The test had a time length of 2,200 s. The injection started at time tstart = 310 s and finished at tend = 1,800 s, so it had a 347 

duration of 1,490 s. The mass rate varied in a range between 0 and approximately 60 μg/s. Through a photographic 348 

survey, the tracer concentration was estimated at every point of the domain. Two observation points only were 349 

considered for the application of the two methodologies discussed in this paper (Figs. 3 and 4). At such points the 350 

concentration was estimated every 5 s for the whole duration of the test (Fig. 4). The contaminant release history, in 351 

terms of mass rate, presented three peaks of different magnitude (Fig. 5). In Figs. 4 and 5 the time scale is referred at 352 

tstart. Two monitoring points only were considered so as to simulate a real case, in which there are generally few points 353 

and more observations in time, only. Indeed, the realization of a large number of monitoring wells can be very 354 

expensive; moreover, a case with a small number of observation points is more severe. 355 

3.3 Description of the numerical model 356 

The sandbox was represented by a numerical flow and transport model in order to provide an essential tool for the two 357 

methodologies. 358 

The main assumption is that the flow and transport phenomena are uncoupled and the flow has mainly two-dimensional 359 

components in the vertical plane; the porous medium was considered homogeneous and isotropic. The groundwater 360 

flow was reproduced with MODFLOW 2000 (Harbaugh et al. 2000) and the transport process using MT3DMS with 361 

TVD as advection solver package (Zheng and Wang 1999). 362 

The sandbox was described by using a finite difference grid of 192 columns (representing the longitudinal size), 140 363 

layers (describing the sandbox height) and one row only (the depth size), resulting in 26,880 computation nodes. The 364 

size of each numerical cell was ( ) ( )5.0,0.10,5.0,, = zyx  cm. The hydraulic parameters (see Table 1) of the 365 

numerical flow model were set up by comparing the measured and computed flows in steady state condition (without 366 

any injection), assuming that the porous medium is homogeneous and isotropic. The transport parameters (see Table 1) 367 

were calibrated by fitting the experimental and numerical breakthrough curves of different experiments (with various 368 

injection rates and concentration values) at several monitoring points. As an example, Figure 6 shows the good 369 

agreement between the numerical and the observed breakthrough curves at three monitoring points located at different 370 

distances (14.75, 33.75, 57.75 cm) downstream the injection point of the present test case. 371 

Once the numerical model was validated, it was used for both inverse methodologies: to compute the TFs numerically 372 

(for more details see Butera et al 2013), and to build the backward probability model (Neupauer and Wilson 1999). 373 

3.4 Results of the geostatistical approach (GA) 374 

The SA was assumed upgradient from the measurement points in the region 11.25 ≤ x ≤ 17.25 cm and 375 

29.75 ≤ z ≤ 35.75 cm, and it was subdivided into 9 sub areas as shown in Figure 3. The centroid of each area represents 376 

a possible source location. The suspected area is a 6x6 cm square, which is quite large compared to the pore dimension 377 

(1 mm) and the dispersivity values (1.6 mm). In fact it is about 60 times the grain dimension and it is comparable with 378 

the plume’s transverse dimension. At first, the TFs relevant to the two monitoring points and the nine possible sources 379 

were computed by applying the SIF procedure, requiring nine runs of the forward flow and transport models. In the test 380 

case considered the mass rate released in time and source position are the unknowns. For each monitoring point, 32 381 

concentration values were considered available throughout the duration of the injection with a time step equal to 70 s 382 
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(Fig. 4). Uncertainty associated with each concentration value was considered constant as described in section 3.1. A 383 

Gaussian covariance function was chosen ( ) ( )( )22
exp, sjisji ttttQ  −−=θ , so variance 

2
s  and correlation length 384 

2
s  were estimated for each of the nine suspected point source. Finally, the SRSI procedure was carried out and the 385 

release function for each of the nine possible sources was obtained (Fig. 5). 386 

The release history assumes negligible values in all the locations, except in x = 14.25 cm, z = 32.75 cm. This result 387 

indicates that the source is located in the sub-area with those centroid coordinates (just the ones of the actual source). 388 

The release history recovered for the source location x = 14.25 cm, z = 32.75 cm shows a good agreement between the 389 

observed and the peak times recovered; moreover the whole release history is included in the 5-95% confidence 390 

interval. 391 

A drawback of methodology is that if the number of SA is too high, the methodology could be computationally 392 

ineffective, because it requires one run of the numerical model for each suspected source. 393 

3.5 Results of backward model based on adjoint state method (BPM -ASM) 394 

3.5.1 Unconditioned single-observation backward location PDF 395 

At first, the single unconditioned backward location probability density functions were calculated at the single 396 

observation points P1 and P2 (see Fig. 3). At backward time 0= , a tracer solution discharge equal to wQ  and a 397 

concentration given by (16), was injected for one time step only. 398 

The travel times between the true source and observation points P1 and P2 are respectively sP 3401 =  and 399 

sP 4002 = . So, the evolution of the backward location PDF, at backward time s400= (Figs. 7a and 7b) was 400 

computed. Whereas the porous medium is homogeneous and isotropic, the shapes of the contours are symmetric as 401 

shown in Figs. 7a and 7b. Moreover, Fig. 7a shows that for a closer observation point, the backward location PDF is 402 

higher, as expected. This spreading out of probability density function is caused by dispersion, similar to the processes 403 

that occur in a forward model. 404 

3.5.2 Multiple-observation backward location PDF 405 

In this case, two observations of contamination collected at the two observation points are used to calculate the 406 

multiple-observation location PDF, given by (22). It was assumed that the particles observed in P1 and P2 were 407 

originated by a unique release at the same point source location at the same backward time. As shown in Figure 7c, the 408 

dispersion of the backward location is smaller than the two single-observation location PDF (Figs. 7a and 7b). This 409 

approach does not allow to consider the concentration measurement, but only the presence or the absence of the 410 

contaminant. So, one point detected in a marginal position of the plume could compromise the result because the 411 

observations cannot identify the plume shape. In fact, in the backward model, the backward location PDF simply 412 

follows the same processes that occur in the forward model, and the resulting multiple-observation backward location 413 

PDF is not able to give a weight to observations with a higher concentration value. 414 

3.5.3 Backward location PDF conditioned on measured concentrations 415 

In the previous sections the concentration measured at the two observation points was not considered. A lot of 416 

information about the concentration in time at both points P1 and P2 was available through the images collected during 417 

the laboratory test. However the method requires only the concentration values at the monitoring points collected at a 418 

time t . Several sample times were considered during preliminary studies and all yielded very similar results. In this 419 

case, the results due to the concentration sampled at t  = 590 s after tstart are shown. Since the release mass is considered 420 
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unknown, as the source location, ( );,ˆ
00,ˆ

0

xmCf iXMCi

 was calculated for each observation for a range of possible 421 

source masses (50 mg < m0 < 70 mg) and a range of possible source locations that include the entire spatial domain. An 422 

iterative procedure was developed with Matlab (Mathworks 2010) in order to change the source position in every cell, 423 

and run the flow and transport models. This approach could be computationally challenging if the number of cells is too 424 

high, due either to an excessively extensive investigated area or a high spatial resolution. This could be improved by 425 

analyzing the delineated suspected area only, as in the SRSI method. The concentrations observed at the monitoring 426 

points used to condition the backward location PDF were 16.97 mg/l for P1 and 3.88 mg/l for P2 (Fig. 4). As described 427 

in section 3.1, the measurement error is taken as being constant and equal to 3 mg/l, although this value represents the 428 

maximum error, and for small concentrations it is smaller than the one considered. The source location, based on the 429 

backward location probability density function, conditioned on concentrations measured, is very well identified. The 430 

conditioned backward probability PDF plume has a long and narrow shape, as shown in Figure 7d. This improvement 431 

reduces the backward location variance and it allows to increase information on the source. 432 

3.5.4 Sensitivity of BPM-ASM on the assumed release time 433 

An assumption on the release time is required when the backward probability model is used, so a study about the effect 434 

of this parameter on the results was considered. In the previous sections, the backward release time was fixed at τ = 435 

400 s. An error of 10% and 20% of 2P  was considered with the aim of studying the results with a wrong time 436 

release. Thus, backward release times τ-10% = 360 s, and τ-20% = 320 s were hypothesized, and the results are shown in 437 

Figures 8 and 9. While the results obtained with a 10% error remain acceptable, a 20% error does not allow to identify 438 

the true source location. Moreover, by considering an error of +10% (τ+10% = 440 s) or +20% (τ+20% = 480 s), the source 439 

location will be estimated upstream the true one and it will present a larger backward location PDF plume than the one 440 

estimated with -10% or -20%. 441 

4. Discussion and Conclusions 442 

A comparison between two methods, simultaneous release function and source location identification (SRSI) and 443 

backward probability model based on adjoint state method (BPM-ASM), was carried out. For the application of these 444 

methodologies, experimental data collected through laboratory equipment under controlled conditions were used. This 445 

allowed to perform both methodologies in a real test case in which the true solution was known a priori. A numerical 446 

model was calibrated on experimental data with the aim of computing the transfer functions (Butera et al. 2004, 2006) 447 

and building the backward model for the BPM-ASM (Neupauer and Wilson 1999, 2000). The SRSI procedure is able to 448 

simultaneously recover the release function and identify the source location, but it requires a preliminary delineation of 449 

the suspected areas and some weak hypothesis about the statistical structure of the unknown release function. The 450 

number of preliminary runs of the forward transport model needed to obtain the numerical TFs is equal to the number of 451 

the suspect source locations. 452 

The backward location PDF describes the possible former positions of the observed contamination at a fixed time in the 453 

past. By using an adjoint model, an instantaneous point source of an adjoint state (related to the backward location 454 

PDFs) is released at the observation location. Given the simplicity of the flow field, the exchange of the boundary 455 

conditions was sufficient to obtain the backward model. At first, the unconditioned backward-location PDFs were 456 

calculated for each monitoring point, by considering the known time release. The multiple-observation PDF was then 457 

calculated and finally it was conditioned on the experimental concentration measurement. This method identifies the 458 

true source very well. As with the SRSI method, two observation points were used, but while in the SRSI multiple times 459 
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were considered (32 sampling times for each monitoring point in this test case), in the BPM-ASM only two 460 

observations at a specific time, were required. 461 

In conclusion, both methods allow to identify the true source; the SRSI also allows to recover the release history. While 462 

the SRSI method requires the definition of a suspected area, the BPM-ASM requires a known release time: both 463 

hypotheses could be strong in certain cases. Finally both methodologies could be computationally inefficient, and if the 464 

SRSI requires a forward run for each suspected source, the conditioning on the measured concentrations of multiple-465 

observation PDF requires a forward run for each grid node of the numerical model. The number of the forward runs in 466 

the BPM-ASM could be reduced by analyzing the suspected area only. Another important difference between the two 467 

methods is that the SRSI works with multiple sources too, while the BPM-ASM is able to recognize one point source 468 

only. In fact the multiple-observation PDF is based on the hypothesis that all particles observed at a specific time were 469 

originated at the same location from an instantaneous release. It is important to notice that the BPM-ASM performed 470 

well in the test case considered too, in which the observations were originated from a complex release history. 471 

In order to overcome the limits of the two methods, a new procedure which includes the best performance of both 472 

approaches could be developed: for instance the BPM-ASM could be preliminarily used to identify the suspected areas, 473 

by considering several backward times, and then the SRSI can be applied to estimate the true source location and its 474 

release function. 475 
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Tables 548 

 549 

Table 1 Transport and hydraulic parameters of the numerical model. 550 

Hydraulic Conductivity [cm/s] 0.652 

Porosity 0.37 

Specific Storage Coefficient [cm-1] 10-4 

Longitudinal Dispersivity [cm] 0.16 

Transverse Dispersivity [cm] 0.05 

 551 

Figures 552 

 553 

 554 

Figure 1 Sketch of the experimental device (lateral view): constant head boundaries upstream (HU) and downstream 555 

(HD); the red diamond is the source location. Dimensions are in mm. 556 

 557 

 558 

Figure 2 Hydraulic head distribution (in cm) from the numerical model. The red diamond is the source location. The 559 

filled squares denote the possible sources in the SA. The open circle and the triangle represent observation points P1 560 

and P2, respectively. The experimental equipment reproduced an unconfined aquifer. 561 
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 562 

Figure 3 Concentration field estimated through the analysis of the image collected 690 s after the start of the injection. 563 

The concentration field depicted (85.28 x 44.15 cm) corresponds to the rectangle indicated in Figure 1. The red 564 

diamond is the source location. The white filled squares denote the possible sources in the SA. 565 

 566 

 567 

Figure 4 Concentration observed at the two monitoring points (solid line). Black dots are the observations used to 568 

condition the multiple-observation PDF in BPM-ASM method. Time 0 s represents the time at which injection starts 569 

(tstart). 570 
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 571 

Figure 5 The release history recovered at the hypothesized source locations: the true solution (solid black line), best 572 

estimate (red dashed line) and 5-95 % confidence interval (blue dotted line). Coordinates of the sources in cm. Time 0 s 573 

represent the time at which injection starts (tstart). 574 

 575 

Figure 6. Comparison between numerical and experimental breakthrough curves. 576 

 577 
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 578 

Figure 7 Backward location probability density function at τ = 400 s. (a) Unconditioned backward location 579 

PDF: observation point P1. (b) Unconditioned backward location PDF: observation point P2. (c) Multiple-observation 580 

(P1 and P2) backward location PDF (d) Conditioned Backward Location PDF on concentrations. 581 
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 582 

Figure 8 Backward location probability density function at τ-10% = 360 s. (a) Unconditioned backward location 583 

PDF: observation point P1. (b) Unconditioned backward location PDF: observation point P2. (c) Multiple-observation 584 

(P1 and P2) backward location PDF (d) Conditioned Backward Location PDF on concentrations. 585 
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 586 

Figure 9 Backward location probability density function at τ-20% = 320 s. (a) Unconditioned backward location 587 

PDF: observation point P1. (b) Unconditioned backward location PDF: observation point P2. (c) Multiple-observation 588 

(P1 and P2) backward location PDF (d) Conditioned Backward Location PDF on concentrations. 589 
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