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DISLOCATION DYNAMICS IN CRYSTALS:

A MACROSCOPIC THEORY

IN A FRACTIONAL LAPLACE SETTING

SERENA DIPIERRO, GIAMPIERO PALATUCCI, AND ENRICO VALDINOCI

Abstract. We consider an evolution equation arising in the Peierls–Nabarro
model for crystal dislocation. We study the evolution of such dislocation func-

tion and show that, at a macroscopic scale, the dislocations have the tendency

to concentrate at single points of the crystal, where the size of the slip co-
incides with the natural periodicity of the medium. These dislocation points

evolve according to the external stress and an interior repulsive potential.

To appear in Comm. Math. Phys. DOI: 10.1007/s00220-014-2118-6
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1. Introduction

We consider the problem

(1.1) vt = Lsv −W ′(v) + σε(t, x) in (0,+∞)×R,
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2 S. DIPIERRO, G. PALATUCCI, AND E. VALDINOCI

where s ∈ (1/2, 1), Ls is the so-called fractional Laplacian and W is a 1-periodic

potential. More explicitly, given ϕ ∈ C2(R) ∩ L∞(R) and x ∈ R, we define

Lsϕ(x) =
1

2

∫
R

ϕ(x+ y) + ϕ(x− y)− 2ϕ(x)

|y|1+2s
dy.

We refer to [21, 8] for a basic introduction to the fractional Laplace operator. As

for the potential, we assume that W ∈ C2,α(R), for some 0 < α < 1, and:

(1.2)


W (u+ 1) = W (u) for any u ∈ R,
W (k) = 0 for any k ∈ Z,
W > 0 in R \Z,
W ′′(0) > 0.

As customary, ε > 0 is a small scale parameter, and σε plays the role of an exterior

stress acting on the material. We suppose that

σε(t, x) := ε2sσ(ε1+2st, εx),

where σ is a bounded uniformly continuous function such that, for some α ∈ (2s−
1, 1) and M > 0, it holds

‖σx‖L∞([0,+∞)×R) + ‖σt‖L∞([0,+∞)×R) 6M,

|σx(t, x+ h)− σx(t, x)| 6M |h|α, for every x, h ∈ R and t ∈ [0,+∞).
(1.3)

The problem in (1.1) arises in the classical Peierls–Nabarro model for atomic

dislocation in crystals, see e.g. [15] and references therein. We will recall the basics

of such model in the subsequent Section 2. Now, setting

vε(t, x) := v

(
t

ε1+2s
,
x

ε

)
,

we look at the equation satisfied by the rescaled function vε, that is, recalling (1.1),
(vε)t =

1

ε

(
Lsvε −

1

ε2s
W ′(vε) + σ(t, x)

)
in (0,+∞)×R,

vε(0, ·) = v0ε in R.

(1.4)

To suitably choose the initial condition v0ε and to state our main result, we introduce

the basic layer solution u, that is the solution of the problem{
Lsu−W ′(u) = 0 in R,

u′ > 0 and u(−∞) = 0, u(0) = 1/2, u(+∞) = 1.
(1.5)

For the existence of such solution and its main properties see [19, 5]. An interesting

feature of this solution is the fact that it approaches its limits at ±∞ with a

polynomial decay, namely

(1.6)

∣∣∣∣u(x)−H(x) +
1

2sW ′′(0)

x

|x|1+2s

∣∣∣∣ 6 C

|x|1+2s
for any x ∈ R,

as we will show in Proposition 7.2 (here and in the rest of the paper, H is the

Heaviside1 step function). When s = 1/2 the estimate in (1.6) is somehow simpler,

thanks to some explicit representation formulas: in our case, to prove (1.6) we

1Namely, H(x) = 0 if x < 0, H(x) = 1 if x > 0 (the explicit value at x = 0, that is assumed to
be in [0, 1], plays no role).
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will construct by hand a particular solution for a different potential and scale it

appropriately in order to fit the asymptotics of the original solution.

We recall that the semi-continuous envelopes of u are defined as

(1.7) u∗(t, x) = lim sup
(t′,x′)→(t,x)

u(t′, x′)

and

u∗(t, x) = lim inf
(t′,x′)→(t,x)

u(t′, x′).

Moreover, given x01 < x02 < . . . < x0N , we consider the solution
(
xi(t)

)
i=1,...,N

to

the system
ẋi = γ

−σ(t, xi) +
∑
j 6=i

xi − xj
2s |xi − xj |2s+1

 in (0,+∞),

xi(0) = x0i ,

(1.8)

where

(1.9) γ =

(∫
R

(u′)2
)−1

.

For the existence and uniqueness of such solution see Section 8 in [9]. We consider

as initial condition in (1.4) the state

(1.10) v0ε (x) =
ε2s

β
σ(0, x) +

N∑
i=1

u

(
x− x0i
ε

)
,

where

(1.11) β := W ′′(0) > 0.

The main result obtained in this framework is the following:

Theorem 1.1. Assume that assumptions (1.2), (1.3) and (1.10) hold, and let

(1.12) v0(t, x) =

N∑
i=1

H(x− xi(t)),

where H is the Heaviside function, and (xi(t))i=1,...,N is the solution to (1.8).

Then, for every ε > 0 there exists a unique viscosity solution vε to (1.4). Fur-

thermore, as ε→ 0, the solution vε exhibits the following asymptotic behavior:

(1.13) lim sup
(t′,x′)→(t,x)

ε→0

vε(t
′, x′) 6 (v0)∗(t, x)

and

(1.14) lim inf
(t′,x′)→(t,x)

ε→0

vε(t
′, x′) > (v0)∗(t, x)

for any t ∈ [0,+∞) and x ∈ R.
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When s = 1/2 the result above was proved in [11], where it was also raised the

question about what happens for other values of the parameter s.

It is worth pointing out that one of the crucial ingredients used in [11] (see,

in particular, pages 20-21 there) is the precise knowledge of the asymptotics of

the layer solutions in the case when s = 1/2. In [11], this was obtained by pass-

ing through the harmonic extension, in order to use a comparison argument with

the solution of the Peierls–Nabarro problem, which has an explicit representation

when s = 1/2. On the contrary, in the arguments we provide here, we follow

a different approach that avoids both the harmonic extension (that is somehow

specialized for fractional Laplacian operators but does not fit other more general

equations) and the use of explicit formulas for solutions (that are only available

when s = 1/2). For us, the improved asymptotics for the layer solutions u of (1.5)

is based on an auxiliary class of potentials V coupled with the solutions φ of the

corresponding problems Lsφ = V ′(φ), which we are able to control via the con-

struction of suitable barriers. Then, in a subsequent step, this general approach

will permit us to provide a precise order of approximation also for the asymptotics

of the original layer solutions u in terms of the original potential W .

Since, differently from [11], we do not make use of any harmonic extension results,

that are specific for the fractional powers of the Laplacian, our proof is feasible

for more general types of integro-differential equations (as a matter of fact, our

approach provides a different proof also for the case s = 1/2 treated in [11]).

In the course of the proof, our basic strategy is to make the ansatz that the

solution is, at the first order, the superposition of transition layers. To make this

rigorous, a suitable corrector needs to be introduced in order to take care of the

higher order remainders.

The rest of the paper is organized as follows. In Section 2, we will give a quick

review of the Peierls–Nabarro model, giving a physical interpretation to the results

in Theorem 1.1. In Section 3, we will present some formal heuristics on the transi-

tion layers, in order to explain how the ODE system in (1.8) naturally appears as

the leading order of the dislocation evolution.

Then, the rigorous mathematical treatment of the problem begins in Section 4,

where we point out a comparison principle that will be used in Section 5 to introduce

the layer solution and the solution to an auxiliary corrector equation, needed to

approximate the solution at a sufficiently high order. In Section 6, we construct

an auxiliary transition layer driven by a suitable potential, which will be used

in Section 7 to control the standard transition layer up to the desired order of

approximation. The proof of Theorem 1.1 will be completed in Section 8.

2. Physical motivations

We recall here a simple (and even oversimplified) version of a model for the

dynamics of the dislocation of atoms in crystals. The model is related to the

Peierls–Nabarro energy functional that combines the elastic properties of the ma-

terial with a misfit occurring along a glide line (for simplicity, we consider here

a two-dimensional model). The system is in fact a hybrid combination in which
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a discrete dislocation occurring along a slide line is incorporated in a continuum

medium. Of course, any hybrid system is based somehow on a radical approxima-

tion of the structure of the matter, but this may also lead to equations that are

more convenient to deal with analytically than the ones arising in more detailed,

but less treatable, models. Also, in spite of the simplicity of the equations obtained,

the Peierls–Nabarro model and its modifications are commonly considered as good

explanations for the plastic behaviors of some metals.

In our mathematical setting, the medium will be the plane R2, endowed with

coordinates (x, y), and the glide line will be taken as the x-axis. As a matter of fact,

since the argument is symmetric, we will focus only on the energy contribution of

the upper half-plane R2
+ :=

{
(x, y) ∈ R2 s. t. y > 0

}
(or, simply, we make a slide

deformation in the upper part of the crystal, by keeping the lower part fixed).

We suppose that the material has a crystalline structure that leads atoms to

display periodically. Namely, the atoms on the x-axis have the preference of occu-

pying the integer sites, in virtue of the configuration of the crystal on a large scale.

If a misfit occurs (e. g. due to an external stress) which moves some atoms out of

their rest position, the material will react trying to restore a crystalline configu-

ration, that is either the original configuration or one obtained by translating the

configuration by the natural periodicity of the crystal. This effect may be modeled

by defining v0(x) to be the discrepancy between the position of the atom x with

its rest position (hence, at a global scale, the misfit of the crystal on the glide line

is v0(+∞)− v0(−∞)). Then, the misfit energy is taken as

M (v0) :=

∫
R

W (v0(x)) dx.

Notice that (1.2) assures that M is minimized when all the atoms are at rest

(i. e., v ≡ 0) as well as when all the atoms are shifted to another periodic configu-

rations (e. g., v ≡ 1).
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Figure 1

The material2 is also influenced by the classical elastic energy. That is, by

considering the dislocation function v(x, y) on all R2
+ (notice that v(x, 0) = v0(x)),

the elastic contribution is given by

E (v) :=
1

2

∫
R2

+

|∇v(x, y)|2 dxdy.

The total energy of the system is, therefore,

F (v) := E (v) + M (v0) =
1

2

∫
R2

+

|∇v(x, y)|2 dxdy +

∫
R

W (v(x, 0)) dx,

up to dimensional constants that we neglect. We remark that critical points of F

(and in particular energy minimizers) satisfy the equation{
∆v(x, y) = 0 for any x ∈ R and y > 0,

∂yv(x, 0) = W ′(v(x, 0)) for any x ∈ R,

that is, up to a normalizing constant, L1/2v
0(x) = W ′(v0(x)) for any x ∈ R

(to be compared with (1.5)). The corresponding parabolic evolution equation is

v0t = L1/2v
0 −W ′(v0) (to be compared with the forced analogue in (1.1)). The

operator Ls (and even more general types of operators) may be obtained with this

construction in presence of heterogeneous media.

2Figure 1 is an attempt of describing the deformation in a portion of the crystal. Though
the crystal is infinite, each row drawn in the picture contains ten atoms, for simplicity. The
three upper rows belong to R2

+, while the three rows on the bottom lie in R2 \ R2
+. The arrow

on the third row represents v0, that is the dislocation from the original position of the atom,

which is represented by a void circle: in this case, if the period of the crystal is 1, then v0

there is approximatively 0.5, while v0 on the extreme left (respectively, on the extreme right) is
approximatively 0 (respectively, 1).
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As a matter of fact, we can perform a small variation of the model above to

obtain the equation for v0 by an argument which only involves the elastic reactions

on the slip line. For this, we suppose that the displacement v0 causes an elastic

reaction on the slip plane with some polynomial decay. For instance, suppose that

the elastic energy density at the point x of the slip line is proportional to v0(x),

say

dE 0(v0;x) = K (x)v0(x) dx

and assume that K (x) arises from the variation of v0 along the line, weighted by

a polynomially decreasing tail, such as, in the principal value sense,

K (x) =

∫
R

v0(x)− v0(y)

|x− y|1+2s
dy.

Then, at least formally, we have that

E 0(v0) =

∫
R

dE 0(v0;x)

=

∫
R

∫
R

(
v0(x)− v0(y)

)
v0(x)

|x− y|1+2s
dx dy

=
1

2

∫
R

∫
R

(
v0(x)

)2
|x− y|1+2s

dxdy +
1

2

∫
R

∫
R

(
v0(y)

)2
|x− y|1+2s

dxdy

−
∫
R

∫
R

v0(y)v0(x)

|x− y|1+2s
dxdy

=
1

2

∫
R

∫
R

(
v0(x)− v0(y)

)2
|x− y|1+2s

dxdy.

In this framework, the total energy becomes

E 0(v0) + M (v0) =
1

2

∫
R

∫
R

(
v0(x)− v0(y)

)2
|x− y|1+2s

dxdy +

∫
R

W (v(x, 0)) dx,

up to dimensional constants, and critical points of this energy functional satisfy

Lsv
0(x) = W ′(v0(x)) (compare again with (1.5) and (1.1)).

In these physical models, Theorem 1.1 studies the (sufficiently long) time evo-

lution in a crystal with (sufficiently small) periodic scale of the atom dislocation

under an external stress. The initial configuration taken into account in (1.10)

corresponds, roughly and in the appropriate space and time scaling, to N separate

dislocations that are as intense as one single period of the crystal and are centered

at x01, . . . , x
0
N , possibly plus an external strain deformation. This dislocation func-

tion evolves in time approaching the superposition of N pure deformations, each

of the size of the periodicity of the crystal: in this sense, at least at a macroscopic

space and time scale, dislocations occur at single points of the crystal, and each

dislocation has exactly the same size as the periodicity of the crystal (see (1.12);

the envelopes in (1.13) and (1.14) are mainly needed to obtain a semi-continuous

interpolation of the profile from both sides, thus resolving the ambiguity of the

notion of the displacement function at its jump points).
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These pure deformations are centered at points x1(t), . . . , xN (t) that evolve ac-

cording to (1.8): that is, they react elastically against the external stress3 and

interact one with the other in a repulsive way.

In this sense, Theorem 1.1 gives a detailed and rigorous mathematical description

of the creation, displacement and motion of defects in crystals under a small external

stress.

Models similar to the one discussed here were presented also in [1, 2, 6, 7, 10,

12, 13, 14, 17, 18, 23, 24]. For further discussions about the dislocation dynamics

also in relation with homogenization properties see e. g. [16] and references therein.

Figure 2

3. Heuristics on the dynamics of the transition layers

Here we would like to give a formal (absolutely not rigorous) justification of the

ODE system in (1.8) that drives the motion of the transition layers.

3Notice a sign change in the stress between (1.1) and (1.8). There is no mystery in this sign
change, as we try to explain in Figure 2, where a single translation is considered in case of a
positive stress σ. Suppose that the dashed curve represents the transition v at time t. Then, at
any given point, the positive stress will try to increase the value of v at time t + δt, according
to (1.1). The result of this increasing the value of the function is represented by the solid curve

in Figure 2. All in all, the dashed transition at time t has moved towards the left to the solid
transition at time t + δt. This clearly suggests that a positive stress results into a motion of the
transition points towards the negative side and explains the sign change for σ from (1.1) to (1.8).
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For this, we use the notation ' to denote equality up to negligible terms in ε

and we exploit the notation

uε,i(t, x) := u

(
x− xi(t)

ε

)
.

With a slight abuse of notation we write

u′ε,i(t, x) := u′
(
x− xi(t)

ε

)
.

We also write ν for a generic integer number: e. g., we will write that the Heaviside

step function H is equal to ν, since it is equal to either 0 or 1, and notice that

W ′(ν) = 0 and W (r + ν) = W (r) for any r ∈ R. In this setting, by (1.6), we have

that

uε,i(t, x) ' H

(
x− xi
ε

)
− ε2s (x− xi)

2sW ′′(0) |x− xi|1+2s

= ν − ε2s (x− xi)
2sW ′′(0) |x− xi|1+2s

.(3.1)

The idea is now to use the ansatz that the solution vε is well-approximated by the

sum of N transitions, and plug this expression into equation (1.4). For this we

write

vε(t, x) '
N∑
i=1

uε,i(t, x) =

N∑
i=1

u

(
x− xi(t)

ε

)
so that

(vε)t = −
N∑
i=1

u′
(
x− xi(t)

ε

)
ẋi(t)

ε

and Lsvε =
1

ε2s

N∑
i=1

(Lsu)

(
x− xi(t)

ε

)

=
1

ε2s

N∑
i=1

W ′
(
u

(
x− xi(t)

ε

))

=
1

ε2s

N∑
i=1

W ′ (uε,i(t, x)) .

By inserting into (1.4), after a multiplication by ε we obtain

−
N∑
i=1

u′
(
x− xi(t)

ε

)
ẋi(t)

=
1

ε2s

[
N∑
i=1

W ′ (uε,i(t, x))−W ′
(

N∑
i=1

uε,i(t, x)

)
+ ε2sσ(t, x)

]
.

(3.2)

Now we make some observations on the asymptotics of the potential W . First of

all, we notice that

(3.3)

∫
R

W ′ (u(x))u′(x) dx =

∫
R

d

dx
W (u(x)) dx = W (1)−W (0) = 0.
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Thus, by changing variable,

(3.4)

∫
R

W ′ (uε,k(t, x))u′ε,k(t, x) dx = 0.

Also, we observe that, if i 6= k, the function

y 7→ u

(
y +

xk − xi
ε

)

is asymptotic to either 0 (if xk < xi) or 1 (if xk > xi) for small ε, hence we write

u

(
y +

xk − xi
ε

)
' ν

for any i 6= k. Thus,

W ′

(
N∑
i=1

u

(
y +

xk − xi
ε

))
= W ′

u(y) +
∑

16i6N
i6=k

u

(
y +

xk − xi
ε

)
' W ′ (u(y) + ν) = W ′ (u(y)) .

So, we use the substitution y := (x− xk)/ε to see that

1

ε

∫
R

W ′

(
N∑
i=1

uε,i(t, x)

)
u′ε,k(t, x) dx

=

∫
R

W ′

(
N∑
i=1

u

(
y +

xk − xi
ε

))
u′(y) dy

'
∫
R

W ′ (u(y))u′(y) dy = 0,

(3.5)

thanks to (3.3). Using (3.5) and (3.4), we obtain that

1

ε2s

∫
R

[
N∑
i=1

W ′(uε,i(t, x))−W ′
(

N∑
i=1

uε,i(t, x)

)
+ ε2sσ(t, x)

]
u′ε,k(t, x) dx

' 1

ε2s

∫
R

[
N∑
i=1

W ′(uε,i(t, x)) + ε2sσ(t, x)

]
u′ε,k(t, x) dx

=
1

ε2s

∫
R

 ∑
16i6N
i6=k

W ′(uε,i(t, x)) + ε2sσ(t, x)

u′ε,k(t, x) dx.

(3.6)
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Now we use (3.1), the fact that W ′(0) = 0 and a Taylor expansion to see that

W ′(uε,i(t, x)) ' W ′
(
ν − ε2s (x− xi)

2sW ′′(0) |x− xi|1+2s

)
= W ′

(
−ε2s (x− xi)

2sW ′′(0) |x− xi|1+2s

)
' W ′′(0) · −ε2s (x− xi)

2sW ′′(0) |x− xi|1+2s

=
−ε2s (x− xi)

2s |x− xi|1+2s
.

Therefore, using the substitution y := (x− xk)/ε, we obtain that, for any i 6= k,

1

ε

∫
R

W ′(uε,i(t, x))u′ε,k(t, x) dx ' −1

ε

∫
R

ε2s (x− xi)
2s |x− xi|1+2s

u′
(
x− xk
ε

)
dx

= −
∫
R

ε2s (xk − xi + εy)

2s |xk − xi + εy|1+2s
u′(y) dy

' −
∫
R

ε2s (xk − xi)
2s |xk − xi|1+2s

u′(y) dy

=
−ε2s (xk − xi)

2s |xk − xi|1+2s
.(3.7)

Moreover

1

ε

∫
R

σ(t, x)u′ε,k(t, x) dx =

∫
R

σ(t, xk + εy)u′(y) dy

'
∫
R

σ(t, xk)u′(y) dy = σ(t, xk).(3.8)

So we plug (3.7) and (3.8) into (3.6) and we conclude that

1

ε2s

∫
R

[
N∑
i=1

W ′(uε,i(t, x))−W ′
(

N∑
i=1

uε,i(t, x)

)
+ ε2sσ(t, x)

]
u′ε,k(t, x) dx

' −
∑

16i6N
i6=k

ε (xk − xi)
2s |xk − xi|1+2s

+ εσ(t, xk).

(3.9)

Observe now that, if i 6= k, the function

y 7→ u′
(
y +

xk − xi
ε

)
is asymptotic to u′(±∞) = 0 for small ε, therefore∫

R

u′
(
x− xi
ε

)
u′ε,k(t, x) dx

= ε

∫
R

u′
(
y +

xk − xi
ε

)
u′(y) dy ' 0

if i 6= k. Similarly,∫
R

u′
(
x− xk
ε

)
u′ε,k(t, x) dx = ε

∫
R

(u′(y))2 dy =
ε

γ
,
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by (1.9). Now we test (3.2) against u′ε,k and we recall (3.9). We obtain

−εγ−1ẋk(t) = −
∑

16i6N
i6=k

ε (xk − xi)
2s |xk − xi|1+2s

+ εσ(t, xk),

which gives (1.8) after a division by ε.

4. A comparison principle

For further use, we present here a comparison principle for sub and supersolutions

decaying at infinity:

Proposition 4.1. Let v ∈ L∞(R) ∩ C2(R) such that

(4.1) lim
x→±∞

v(x) = 0.

Suppose that there exists a function d ∈ L∞(R) such that d(x) > 0 for any x ∈ R,

and Lsv > dv (respectively Lsv 6 dv). Then either v ≡ 0 or v < 0 (respectively v >

0).

Proof. We prove first that

(4.2) Lsv > dv =⇒ v 6 0.

By contradiction, assume that the function v reaches its maximum at a point x̄

such that v(x̄) > 0. Therefore,

(4.3) Lsv(x̄) =
1

2

∫
R

v(x̄+ y) + v(x̄− y)− 2v(x̄)

|y|1+2s
dy 6 0

since v(x) 6 v(x̄) for any x ∈ R. On the other hand,

(4.4) Lsv(x̄) > dv(x̄) > 0.

From (4.3) and (4.4) we get that

v(x̄+ y) + v(x̄− y)− 2v(x̄) = 0

for any y ∈ R, hence v is constantly equal to its maximal value v(x̄). From the

fact that such value is strictly positive, we reach a contradiction with (4.1). This

proves (4.2).

Now, we want to show that v < 0 unless v ≡ 0. For this, we suppose that v 6≡ 0

and that there exists a point x̃ such that v(x̃) = 0 > v(x) for any x ∈ R, with strict

inequality in a non empty domain. Hence,

Lsv(x̃) =
1

2

∫
R

v(x̃+ y) + v(x̃− y)− 2v(x̃)

|y|1+2s
dy < 0

and

Lsv(x̃) > dv(x̃) = 0.

The inequalities above give a contradiction. This concludes the proof of the propo-

sition. �
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5. Layer solution and corrector

We recall the following layer solution construction given in Theorem 2 of [19]:

Theorem 5.1. Under the assumptions on the potential W given in (1.2), there

exists a unique solution u to (1.5). Moreover, u ∈ C2(R) and there exists a con-

stant C > 1 such that

(5.1) |u(x)−H(x)| 6 C|x|−2s and |u′(x)| 6 C|x|−(1+2s)

for any large x ∈ R.

As for the corrector equation, we consider the following problem:{
Lsψ −W ′′(u)ψ = u′ + η (W ′′(u)−W ′′(0)) in R,

ψ(−∞) = 0 = ψ(+∞),
(5.2)

where

(5.3) η =

∫
R

(u′(x))2 dx

W ′′(0)
.

The fact that (5.2) is a good ansatz for the corrector equation may be heuris-

tically inferred from the computations in Section 3.1 of [11] (see, in particular,

formula (3.18) there). The existence of a solution for such problem is given by the

following

Theorem 5.2. Suppose that the assumptions on the potential W in (1.2) hold.

Then, there exists a unique solution ψ ∈ Hs(R) to (5.2). Furthermore, we have

that ψ ∈ C1,α
loc (R) ∩ L∞(R), for some α ∈ (0, 1), and

‖ψ′‖L∞(R) < +∞.

For the proof of Theorem 5.2, we consider the following bilinear form on Hs(R)

(5.4) L (v, w) :=

∫
R

∫
R

(v(x)− v(y))(w(x)− w(y))

|x− y|1+2s
dxdy +

∫
R

W ′′(u)vw dx,

and the quadratic functional

(5.5) G (v) :=
1

2

∫
R

∫
R

|v(x)− v(y)|2

|x− y|1+2s
dxdy +

1

2

∫
R

W ′′(u)v2 dx,

where u is the layer solution introduced in (1.5). Also, we consider the closed subset

X ⊂ Hs(R) given by the functions v orthogonal to u′ in L2(R); that is,

(5.6) X :=
{
v ∈ Hs(R) :

∫
R

v(x)u′(x) dx = 0
}
.

We want to prove that the operator L is coercive on X . This does not come for

free, since W ′′(u) is not bounded from below by any positive constant. However,

we can prove the following

Lemma 5.3. Let G : Hs(R)→ R be defined by (5.5) and let X ⊂ Hs(R) be defined

by (5.6). Then there exists a positive constant C such that

(5.7) G (v) > C‖v‖2L2(R), ∀v ∈ X .
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Proof. First of all, we observe that

(5.8) G (v) > 0 for any v ∈ Hs(R).

To prove it, for any R > 0 we introduce the energy functional

ER(w) :=
1

2

∫
QR

|w(x)− w(y)|2

|x− y|1+2s
dxdy +

∫ R

−R
W (w(x)) dx,

where QR :=
(

(−R,R) × R
)
∪
((
R \ (−R,R)

)
× (−R,R)

)
. Since u is a local

minimum (see [19]), we have that ER(u+ εv) > ER(u) and ER(u− εv) > ER(u) for

any ε > 0 and any v ∈ C∞0 ([−R,R]). As a consequence,

0 6 ER(u+ εv) + ER(u− εv)− 2ER(u)

= ε2D2ER(u)[v, v] + o(ε2)

= 2ε2G (v) + o(ε2).

Then, a division by ε2 and a limit argument gives that G (v) > 0 for any v ∈
C∞0 ([−R,R]). Since R > 0 is arbitrary this holds true for any v ∈ C∞0 (R) and so,

by density, for any v ∈ Hs(R), thus proving (5.8).

Now we define X1 to be the set of all functions v belonging to X and such

that ‖v‖L2(R) = 1. Let also

ı := inf
v∈X1

G (v).

We remark that

(5.9) ı < +∞.

Indeed, let I− and I+ be two disjoint open intervals and φ± ∈ C∞0 (I±), with φ± > 0

in I±. We also define

D :=

(∫
R

φ−(x)u′(x) dx

)2 ∫
R

φ2+(x) dx+

(∫
R

φ+(x)u′(x) dx

)2 ∫
R

φ2−(x) dx,

a− := D−1/2
∫
R

φ+(x)u′(x) dx,

a+ := D−1/2
∫
R

φ−(x)u′(x) dx,

and φ := a−φ− − a+φ+.

Notice that φ is smooth and compactly supported, hence φ ∈ Hs(R). Also, a simple

computation shows that∫
R

φ(x)u′(x) dx = a−

∫
R

φ−(x)u′(x) dx− a+
∫
R

φ+(x)u′(x) dx = 0 and

‖φ‖2L2(R) = a2−

∫
R

φ2−(x) dx+ a2+

∫
R

φ2+(x) dx = 1,

and so φ ∈ X1. This implies that ı 6 G (φ) that establishes (5.9).

From (5.8) we know that ı > 0. We claim that

(5.10) ı > 0.
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Before proving this, we observe that (5.7) would plainly follow from (5.10) since,

for any v ∈ X \ {0},

G (v) = ‖v‖2L2(R) G (v/‖v‖L2(R)) > ı‖v‖2L2(R).

Hence, to prove the desired result it is enough to prove (5.10): for that we argue

by contradiction4 and suppose that

(5.11) ı = 0.

So, we take a minimizing sequence {vk}k ⊂ X1, that is, making use of (5.11),

(5.12) 0 = ı = lim
k→+∞

G (vk).

Of course, we can also assume, without loss of generality, that

(5.13) G (vk) 6 ı+ 1.

We claim that

(5.14) ‖vk‖Hs(R) is bounded uniformly in k.

To prove this, we use the assumptions on W given in (1.2) and the asymptotic

behavior of u given by (5.1) to find a constant M̃ > 0 and a nonnegative smooth

function ϕ supported in a compact interval [−K0,K0], with K0 sufficiently large,

such that

(5.15) W ′′(u) + ϕ > M̃ > 0, ∀x ∈ R.

Thus, recalling (5.13), we obtain

min
{

1/2, M̃/2
}
‖vk‖2Hs(R)

6
1

2

∫
R

∫
R

|vk(x)− vk(y)|2

|x− y|1+2s
dxdy +

1

2

∫
R

(
W ′′(u) + ϕ

)
v2k dx

= G (vk) +
1

2

∫
R

ϕv2k dx

6 ı+ 1 + ‖ϕ‖L∞(R)

∫
R

v2k dx

= ı+ 1 + ‖ϕ‖L∞(R).

This establishes (5.14).

Now, we split the functional G as follows

(5.16) G (v) =
1

2
‖v‖2H + R(v),

where we set

‖v‖2H :=

∫
R

∫
R

|v(x)− v(y)|2

|x− y|1+2s
dxdy +

∫
R

(W ′′(u′) + ϕ) v2 dx

and R(v) := −1

2

∫ K0

−K0

ϕv2 dx.

4The proof is a bit long (it will end on page 19) and difficult to break into single pieces: for
the facility of the reader, we provide the full details of all the arguments involved.
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In view of (5.15), the functional ‖ · ‖H provides a norm which is equivalent to

‖ · ‖Hs(R) and which naturally arises from a scalar product (hence we call H the

associated Hilbert space). Therefore, thanks to (5.14), there exists a function v0 ∈
Hs(R) such that, up to subsequences,

(5.17) vk ⇀ v0 in H,

which gives

(5.18) ‖v0‖2H 6 lim inf
k→∞

‖vk‖2H.

We remark that, at this level, we are not claiming that v0 ∈ X1, nor that G (v0) = ı

(i. e., we are not saying that v0 is a minimizer).

From (5.14) and the compact embedding Hs(R) ↪→ L2([−K,K]) for any com-

pact subset [−K,K] ⊂ R (see, e. g., [8, Theorem 7.1]), we obtain that a strong

convergence holds in (5.17) in the norm of L2([−K,K]), namely

(5.19) vk → v0 in L2([−K,K]).

This, by taking K > K0, implies that

(5.20) R(vk)→ R(v0).

By (5.12) and (5.16) we know that

(5.21) 0 = lim
k→+∞

G (vk) = lim
k→+∞

(
1

2
‖vk‖2H + R(vk)

)
.

On the other hand, by (5.15), we have that

‖vk‖2H > M̃‖vk‖2L2(R) = M̃

and so, recalling also (5.20), we deduce from (5.21) that

0 > M̃ + R(v0).

In particular, since M̃ > 0 and R(0) = 0, this implies that

(5.22) v0 6≡ 0.

Now we claim that v0 ∈ X , that is, by (5.6),

(5.23)

∫
R

v0(x)u′(x) dx = 0.

To prove it, we notice that∫
R

(
v0(x)− vk(x)

)2
dx 6 2

∫
R

v20(x) + v2k(x) dx 6 2
(
‖v0‖2Hs(R) + 1

)
.
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Therefore, fixing K > 0 (to be taken as large as we wish in the following) and using

that vk ∈ X ,∣∣∣∣∫
R

v0(x)u′(x) dx

∣∣∣∣
=

∣∣∣∣∫
R

(
v0(x)− vk(x)

)
u′(x) dx

∣∣∣∣
6

∣∣∣∣∣
∫ K

−K

(
v0(x)− vk(x)

)
u′(x) dx

∣∣∣∣∣+

∣∣∣∣∣
∫
R\[−K,K]

(
v0(x)− vk(x)

)
u′(x) dx

∣∣∣∣∣
6

√∫ K

−K

(
v0(x)− vk(x)

)2
dx

∫ K

−K

(
u′(x)

)2
dx

+

√∫
R\[−K,K]

(
v0(x)− vk(x)

)2
dx

∫
R\[−K,K]

(
u′(x)

)2
dx

6 ‖u′‖L2(R)‖v0 − vk‖L2([−K,K]) + ‖u′‖L2(R\[−K,K])

√
2
(
‖v0‖2Hs(R) + 1

)
.

So, if we fix K > 0 and we send k to +∞, we deduce from (5.19) that∣∣∣∣∫
R

v0(x)u′(x) dx

∣∣∣∣ 6 ‖u′‖L2(R\[−K,K])

√
2
(
‖v0‖2Hs(R) + 1

)
.

Now we send K to +∞ and we finish the proof of (5.23).

Also, from (5.16), (5.18) and (5.20) we obtain

G (v0) 6 lim inf
k→∞

G (vk).

Hence, by (5.12), we obtain that G (v0) 6 0 and so, by (5.8), that

(5.24) 0 = G (v0) = min
v∈Hs(R)

G (v).

As a consequence v0 solves the corresponding Euler-Lagrange equation G ′(v0) = 0,

that is

(5.25) Lsv0 = W ′′(u)v0.

The equation above should be, in principle, intended in the distributional sense:

however, from the Morrey-Sobolev embedding (see, for instance, [8, Theorem 8.2])

we have that

(5.26) v0 ∈ Cα(R) ∩ L∞(R)

with α := (2s− 1)/2 > 0 and so v0 is also a classical solution of (5.25); see [20].

Now we point out that

(5.27) v0(x)→ 0, as x→ ±∞.

Indeed, suppose by contradiction that there exist ε0 > 0 and a sequence of points

xn → +∞ such that |v0(xn)| > ε0. Then, by the uniform continuity in (5.26), we

get that for every n ∈ N we can find a neighborhood Bn of xn of measure c0ε
1/α
0 ,

for a suitable c0 > 0, such that |v0(x)| > ε0/2 for any x ∈ Bn. This contradicts the

fact that v0 ∈ L2(R), thus proving (5.27).
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Now, from the assumptions on the potential W in (1.2) and the asymptotic

behavior of u given in (5.1), we get that there exists R > 0 such that

(5.28) W ′′(u(x)) > τ := W ′′(0)/2 > 0 for every x ∈ R \ (−R,R).

Fixing R in this way, using (5.26) and the fact that u′ is positive (see (1.5)), we

conclude that there exists a constant κ0 > 0 such that |v0| < κ0u
′ in [−R,R]. Now,

we denote by

κ? := inf
{
κ s. t. |v0(x)| < κu′(x) for any x ∈ [−R,R]

}
.

Obviously, κ? 6 κ0. Then,

(5.29) |v0| 6 κ?u′ in [−R,R],

and

(5.30) there exists x? ∈ [−R,R] such that |v0(x?)| = κ?u
′(x?).

We define the functions

z±(x) := κ?u
′(x)± v0(x), ∀x ∈ R.

Notice that, by (5.29), we have

(5.31) z± > 0 in [−R,R].

Moreover, from (1.5) we have that u′ solves

Lsu
′ = W ′′(u)u′,

which, together with (5.25) implies that z± satisfy

(5.32) Lsz± = W ′′(u)z± in R.

We claim that we can extend the validity of (5.31) to the whole of R, namely

(5.33) z± > 0 in R.

To prove (5.33), we assume by contradiction that infR z± < 0. We notice that z±
are continuous functions and that, thanks to (1.5) and (5.27),

z±(x)→ 0, as x→ ±∞.

Therefore, since (5.31) holds, there exist x± ∈ R \ [−R,R] such that

(5.34) z±(x±) = min
R
z± < 0.

Hence

(5.35) Lsz±(x±) =
1

2

∫
R

z±(x± + y) + z±(x± − y)− 2z±(x±)

|y|1+2s
dy > 0,

since z±(x) > z±(x±) for any x ∈ R. On the other hand, since x± ∈ R \ [−R,R],

we deduce from (5.28) that W ′′(u(x±)) > 0, and so, by (5.32) and (5.34), we have

Lsz±(x±) = W ′′(u(x±))z±(x±) < 0,

thus obtaining a contradiction with (5.35). This proves (5.33).

Now we define, for every x ∈ R,

d1(x) := max
{
W ′′(u(x)), τ

}
, d2(x) := d1(x)−W ′′(u(x)),



DISLOCATION DYNAMICS IN CRYSTALS 19

where τ was introduced in (5.28). Notice that both d1 and d2 are nonnegative on R.

Therefore, recalling (5.32) and (5.33), we have that z± satisfy

(5.36) Lsz± = W ′′(u)z± = (W ′′(u)− d1) z± + d1 z± = −d2 z± + d1 z± 6 d1 z±.

From (5.33), (5.36) and Proposition 4.1 we obtain that

(5.37) either z± > 0 or z± ≡ 0.

Then, from (5.30) and (5.37), we deduce that either z− ≡ 0 or z+ ≡ 0. In any

case, there exists κ] ∈ {κ?,−κ?} such that κ]u
′(x) = v0(x) for any x ∈ R. Hence,

from (5.23), we have that κ] has to be zero, and so v0 ≡ 0, which is a contradiction

with (5.22).

Hence, (5.10) holds true, and this concludes the proof of Lemma 5.3. �

A simple consequence of Lemma 5.3 is the following result, in which the norm

in L2(R) is replaced by the one in Hs(R):

Lemma 5.4. Let G : Hs(R)→ R be defined by (5.5) and let X ⊂ Hs(R) be defined

by (5.6). Then there exists a positive constant C such that

G (v) > C‖v‖2Hs(R), ∀v ∈ X .

Proof. Let C be the constant given by Lemma 5.3. Thanks to the boundedness

of W ′′, there exists δ > 0 small enough such that

2(1− δ)C + δW ′′(u) > C.

This, together with (5.7), yields

G (v) = (1− δ)G (v) + δG (v)

> (1− δ)C‖v‖2L2(R) + δG (v)

=
δ

2

∫
R

∫
R

|v(x)− v(y)|2

|x− y|1+2s
dxdy +

1

2

∫
R

(
2(1− δ)C + δW ′′(u)

)
v2 dx

> min
{
δ/2, C/2

}
‖v‖2Hs(R),

and thus in turn implying the desired result, up to renaming the constant C. �

Proof of Theorem 5.2. In order to find a solution to (5.2), we set

f := u′ + η
(
W ′′(u)−W ′′(0)

)
,
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where η is given in (5.3). We observe that f belongs to X , which is given in (5.6).

Indeed, thanks to (1.2) and (5.1), f ∈ Hs(R). Moreover,∫
R

f(x)u′(x) dx

=

∫
R

(u′(x))2 dx+ η

∫
R

W ′′(u(x))u′(x) dx− ηW ′′(0)

∫
R

u′(x) dx

=

∫
R

(u′(x))2 dx+ η

∫
R

d

dx
W ′(u(x)) dx− ηW ′′(0)

=

∫
R

(u′(x))2 dx+ η(W ′(1)−W ′(0))−
∫
R

(u′(x))2 dx

W ′′(0)
W ′′(0)

= 0.

Now, we consider the continuous linear functional F on Hs(R) given by

v 7−→ Fv := −
∫
R

fv dx ∀v ∈ Hs(R).

The bilinear form L defined in (5.4) is coercive in X , thanks to Lemma 5.4. There-

fore, from Lax-Milgram Theorem, there exists a unique ψ ∈ Hs(R) such that

L (ψ,w) = Fw for any w ∈ Hs(R).

This means that ψ is a weak solution to (5.2). As a matter of fact, by the Morrey-

Sobolev embedding (see, for instance, [8, Theorem 8.2]), we have that ψ is bounded

and continuous and so it is also a classical solution of (5.2); see [20]. Since s > 1/2,

the fractional Morrey embedding (see, e. g., Theorem 8.2 in [8]) implies that it also

belongs to the Hölder space C(2s−1)/2(R). This and the fact that ψ ∈ L2(R) give

that ψ tends to zero at ±∞.

Finally, from the regularity results in [21, 22] (see, also, [3, Theorem 5] and [19,

Appendix 6.1]), we have that ψ ∈ C1,α
loc (R), for some α = α(s) ∈ (0, 1), and ψ′ ∈

L∞(R). This concludes the proof of Theorem 5.2. �

6. Auxiliary layer solutions

In order to improve the asymptotics for the layer solution u given in (5.1), we

consider an even and positive function ω ∈ C∞(R) such that

ω(x) =
1

|x|1+2s
for any |x| > 1,

and we set

(6.1) A :=

∫ +∞

0

ω(t) dt.

Then we define a function φ ∈ C∞(R) given by

φ(x) =
1

2

(
1 +

1

A

∫ x

0

ω(t) dt

)
.

We notice that

(6.2) φ′(x) =
1

2A
ω(x),
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hence φ is strictly increasing and

(6.3) φ′(x) =
1

2A

1

|x|1+2s
for any |x| > 1.

Moreover, φ is such that φ(−∞) = 0, φ(0) = 1/2 and φ(+∞) = 1 and, since ω is

even, we have the following symmetry property for φ:

φ(−x) =
1

2
+

1

2A

∫ −x
0

ω(t) dt

= 1− 1

2
− 1

2A

∫ x

0

ω(τ) dτ

= 1− φ(x).

(6.4)

We notice that, thanks to (6.2),

(6.5)
Lsφ

′(x)

φ′(x)
=
Ls

1
2Aω(x)
1
2Aω(x)

=
Lsω(x)

ω(x)
.

We define the functions

g(t) := Lsφ(t), t ∈ R,

h(r) := g
(
φ−1(r)

)
, r ∈ (0, 1),

(6.6)

and the potential

(6.7) V (r) :=

∫ r

0

h(ρ) dρ, r ∈ (0, 1).

In this way, the function φ satisfies the equation

Lsφ− V ′(φ) = 0 in R.

The following lemma explicitly computes the asymptotic behavior of Lsω and

will play a crucial role in the proof of the forthcoming Proposition 6.2:

Lemma 6.1. Let ω be as introduced in the beginning of Section 6. Then

lim
|x|→+∞

Lsω(x)

ω(x)
=

∫
R

ω(z) dz.

Proof. For any x, z ∈ R with |x| > 2, we define the quantity

i(x, z) :=
ω(z)− ω(x)− χ(−1/4,1/4)(x− z)ω′(x)(z − x)

|x− z|1+2s
.

We have that, for any z ∈ R,

(6.8) lim
|x|→+∞

|x|1+2si(x, z) = lim
|x|→+∞

|x|1+2s

|x− z|1+2s
(ω(z)− ω(x)) = ω(z).

Also, if |z| 6 1 and |x| > 2, we have that |x− z| > |x| − |z| > |x|/2, and therefore

(6.9) |x|1+2s|i(x, z)| = |x|
1+2s|ω(x)− ω(z)|
|x− z|1+2s

6 16 sup
R

|ω|.

From (6.8), (6.9) and the Bounded Convergence Theorem, we conclude that

(6.10) lim
|x|→+∞

|x|1+2s

∫ 1

−1
i(x, z) dz =

∫ 1

−1
lim

|x|→+∞
|x|1+2si(x, z) dz =

∫ 1

−1
ω(z) dz.
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Now, fixed |x| > 2, we estimate the contribution in R \ (−1, 1). For this, we

write R \ (−1, 1) = P ∪Q ∪R ∪ S, where

P = {z ∈ R \ (−1, 1) : |x|/2 < |z| 6 2|x| and |x− z| > 1/4} ,
Q = {z ∈ R \ (−1, 1) : |x|/2 < |z| 6 2|x| and |x− z| < 1/4} ,
R = {z ∈ R \ (−1, 1) : |z| > 2|x|} ,
S = {z ∈ R \ (−1, 1) : |z| 6 |x|/2} .

Let us estimate the contribution coming from P : if z ∈ P , then

|i(x, z)| = |ω(z)− ω(x)|
|x− z|1+2s

6
|ω(z)|+ |ω(x)|
|x− z|1+2s

=
(1/|z|1+2s) + (1/|x|1+2s)

|x− z|1+2s

6
21+2s + 1

|x|1+2s|x− z|1+2s
.

(6.11)

On the other hand, since ω is even in R \ (−1, 1), we have

ω(z)− ω(x) = ω(|z|)− ω(|x|) = ω′(ξ) (|z| − |x|) ,

where ξ = t|z|+ (1− t)|x| > t |x|
2

+ (1− t) |x|
2

=
|x|
2

, for t ∈ (0, 1). Therefore,

|ω(z)− ω(x)| 6 |ω′(ξ)| ||z| − |x|| 6 C

|x|2+2s
|z − x|.

This implies that

(6.12) |i(x, z)| = |ω(z)− ω(x)|
|x− z|1+2s

6
C

|x|2+2s|x− z|2s
.

Now we make a simple interpolation argument. Namely, we observe that for

any X,Y > 0 and any α, β ∈ (0, 1) such that α+ β = 1 we have

min{X,Y } 6 XαY β .

Therefore

(6.13) min
{
X2+2sY 2s, X1+2sY 1+2s

}
= X1+2sY 2s min{X,Y } 6 X1+2s+αY 2s+β .

So, putting together (6.11) and (6.12) and using (6.13) with X := 1/|x| and Y :=

1/|x− z|, we have that, for every z ∈ P and α, β ∈ (0, 1) such that α+ β = 1,

|i(x, z)| 6 C

|x|1+2s+α|x− z|β+2s
.

Therefore,

|x|1+2s

∫
P

|i(x, z)|dz 6
C

|x|α

∫
P

dz

|x− z|β+2s

6
C

|x|α

∫
{|x−z|>1/4}

dz

|x− z|β+2s
.

In particular, we choose α = s and β = 1− s and we get

(6.14) |x|1+2s

∫
P

|i(x, z)|dz 6 C

|x|s

∫
{|x−z|>1/4}

dz

|x− z|1+s
6

C

|x|s
.
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Now, if z ∈ Q, we use the Taylor expansion of the function 1/|x|1+2s to get

ω(z)− ω(x)− χ(−1/4,1/4)(x− z)ω′(x)(z − x)

= ω(z)− ω(x)− ω′(x)(z − x)

=
1

|z|1+2s
− 1

|x|1+2s
+

1 + 2s

|x|3+2s
x(z − x)

=
(1 + 2s)(2 + 2s)

|ξ|3+2s
|x− z|2,

where ξ is a suitable point lying on the segment joining x to z. We notice that

both x and z lie either in [|x|/2,+∞) or in (−∞,−|x|/2], because z > 0 if and only

if x > 0, if z ∈ Q. This implies that |ξ| > |x|/2, and therefore

|i(x, z)| =
|ω(z)− ω(x)− χ(−1/4,1/4)(x− z)ω′(x)(z − x)|

|x− z|1+2s

=
C

|ξ|3+2s
|x− z|1−2s 6 C

|x|3+2s
|x− z|1−2s.

Hence,

|x|1+2s

∫
Q

|i(x, z)|dz 6 C

|x|2

∫
Q

|x− z|1−2s dz

6
C

|x|2

∫
{|x−z|<1/4}

|x− z|1−2s dz 6
C

|x|2
.

(6.15)

Moreover, if z ∈ R, we have that |x − z| > |z| − |x| > |x| > 1/4, so we can

estimate |i(x, z)| as in (6.11). Therefore,

|x|1+2s

∫
R

|i(x, z)|dz 6 C
∫
{|z|>2|x|}

dz

|x− z|1+2s

6 C
∫
{|x−z|>|x|}

dz

|x− z|1+2s
=

C

|x|2s
.

(6.16)

Finally, we compute the contribution coming from S for large |x|:∫
S
i(x, z) dz

ω(x)
= |x|1+2s

∫
{16|z|6|x|/2}

ω(z)− ω(x)

|x− z|1+2s
dz

= |x|1+2s

∫
{16|z|6|x|/2}

1/|z|1+2s − 1/|x|1+2s

|x− z|1+2s
dz

=

∫
{16|z|6|x|/2}

|x|1+2s − |z|1+2s

|z|1+2s|x− z|1+2s
dz.

Now, setting t = z/x, we have that

|x|1+2s − |z|1+2s

|x− z|1+2s
=
|x|1+2s

(
1−

∣∣ z
x

∣∣1+2s
)

|x|1+2s
∣∣1− z

x

∣∣1+2s =
1− |t|1+2s

|1− t|1+2s
,

which is bounded for |t| 6 1/2. Therefore, we notice that the quantity

|x|1+2s − |z|1+2s

|x− z|1+2s
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is uniformly bounded in x in the set S and tends to 1 as |x| → +∞, and 1
|z|1+2s ∈

L1 (R \ (−1, 1)). Therefore, by the Dominated Convergence Theorem, we have that

(6.17) lim
|x|→+∞

∫
S
i(x, z) dz

ω(x)
=

∫
{|z|>1}

dz

|z|1+2s
=

∫
{|z|>1}

ω(z) dz.

Putting together (6.10), (6.14), (6.15), (6.16) and (6.17), we obtain that

lim
|x|→+∞

Lsω(x)

ω(x)
=

∫ 1

−1
ω(z) dz +

∫
|z|>1

ω(z) dz =

∫
R

ω(z) dz. �

Now, we can prove the following5:

Proposition 6.2. The potential V satisfies the following properties:

i) V ′(0) := lim
r→0+

V ′(r) = 0,

ii) V ′′(0) := lim
r→0+

V ′′(r) = 2A, where A is defined in (6.1).

Proof. First we point out that, by the definitions in (6.6) and (6.7), we have

that V ′(r) = h(r) and

(6.18) V ′′(r) = h′(r) =
g′(φ−1(r))

φ′(φ−1(r))
=
Lsφ

′(φ−1(r))

φ′(φ−1(r))
,

Let us show i). We have

(6.19) lim
r→0+

V ′(r) = lim
r→0+

h(r) = lim
x→−∞

Lsφ(x).

So we have to prove that the limit in (6.19) exists and is equal to zero. For this,

we fix R > 1 and we compute∣∣∣∣∫
R

φ(x+ y) + φ(x− y)− 2φ(x)

|y|1+2s
dy

∣∣∣∣
=

∣∣∣∣∣
∫
BR

φ(x+ y) + φ(x− y)− 2φ(x)

|y|1+2s
dy +

∫
R\BR

φ(x+ y) + φ(x− y)− 2φ(x)

|y|1+2s
dy

∣∣∣∣∣
6 C

(∫
BR

supBR(x) |φ′′|
|y|2s−1

dy +

∫
R\BR

‖φ‖L∞(R)

|y|1+2s
dy

)

= C

(
R2−2s sup

BR(x)

|φ′′|+R−2s‖φ‖L∞(R)

)
.

Now, fixed R, we send x→ −∞, obtaining that the first term tends to zero, thanks

to (6.3). Then, sending R→ +∞, we have that also the second term tends to zero.

This concludes the proof of i).

Now, we show ii). Recalling (6.18) and (6.5), we have that

(6.20) lim
r→0+

V ′′(r) = lim
x→−∞

Lsφ
′(x)

φ′(x)
= lim
x→−∞

Lsω(x)

ω(x)
.

Hence, the desired result follows from Lemma 6.1 and (6.1). �

5We remark that V is C∞ since so is φ (recall (6.6) and (6.7)). As usual, in the statement of

Proposition 6.2, we are using the abuse of notation to identify V ′(0) and V ′′(0) with their limit
values, once we prove that these limits exist. Of course, by symmetry, a similar computation could

have done for V ′(1) and V ′′(1).
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Moreover, the following holds:

Proposition 6.3. The potential V is symmetric with respect to 1/2.

Proof. We compute, for any r ∈ (0, 1/2),

V

(
1

2
+ r

)
− V

(
1

2
− r
)

=

∫ 1/2+r

0

h(ρ) dρ−
∫ 1/2−r

0

h(ρ) dρ

=

∫ 1/2

0

h(ρ) dρ+

∫ 1/2+r

1/2

h(ρ) dρ−
∫ 1/2

0

h(ρ) dρ+

∫ 1/2

1/2−r
h(ρ) dρ

=

∫ 1/2+r

1/2−r
h(ρ) dρ.

Hence, we have to show that the function h is odd with respect to 1/2, that is

(6.21) h

(
1

2
+ r

)
+ h

(
1

2
− r
)

= 0.

To prove (6.21), we set θ(r) := φ−1(1/2 + r). Notice that, by applying (6.4)

with x := θ(r) we have that

φ(−θ(r)) = 1− φ(θ(r)) = 1−
(

1

2
+ r

)
=

1

2
− r,

and so

φ−1
(

1

2
− r
)

= −θ(r).
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Hence we can compute

h

(
1

2
+ r

)
+ h

(
1

2
− r
)

= g

(
φ−1

(
1

2
+ r

))
+ g

(
φ−1

(
1

2
− r
))

= g (θ(r)) + g (−θ(r))

= Lsφ (θ(r)) + Lsφ (−θ(r))

=
1

2

∫
R

φ(θ(r) + y) + φ(θ(r)− y)− 2φ(θ(r))

|y|1+2s
dy

+
1

2

∫
R

φ(−θ(r) + y) + φ(−θ(r)− y)− 2φ(−θ(r))
|y|1+2s

dy

=
1

2

∫
R

φ(θ(r) + y) + φ(θ(r)− y)− 2φ(θ(r))

|y|1+2s
dy

+
1

2

∫
R

1− φ(θ(r)− y) + 1− φ(θ(r) + y)− 2 [1− φ(θ(r))]

|y|1+2s
dy

=
1

2

∫
R

φ(θ(r) + y) + φ(θ(r)− y)− 2φ(θ(r))

|y|1+2s
dy

−1

2

∫
R

φ(θ(r) + y) + φ(θ(r)− y)− 2φ(θ(r))

|y|1+2s
dy

= 0,

where we have used (6.4) once again. This proves (6.21) and concludes the proof

of Proposition 6.3. �

Now, for any a > 0, we set µa = (V ′′(0)a)−1/2s and we define the function

(6.22) φa(x) := φ(µax)

and the potential Va = µ2s
a V . Then, the function φa satisfies

(6.23) Lsφa(x) = µ2s
a Lsφ(µax) = µ2s

a V
′(φ(µax)) = µ2s

a V
′(φa(x)) = V ′a(φa(x)).

Moreover,

(6.24) V ′′a (0) = µ2s
a V

′′(0) =
1

a
.

Since W ′′(0) > 0 (see the assumptions in (1.2)), we can say that there exists a0 > 0

such that

(6.25) V ′′a0(0) = W ′′(0), namely a0 :=
1

W ′′(0)
.

Now, we prove the following

Proposition 6.4. There exists a positive constant C, depending on s, a0 and A,

such that the following estimates hold:

(6.26) |φa0(x)−H(x)| 6 C

1 + |x|2s
for any x ∈ R
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and

(6.27)

∣∣∣∣φa0(x)−H(x) +
a0
2s

x

|x|1+2s

∣∣∣∣ 6 C

|x|1+2s
for any x ∈ R.

Proof. First, we show that, for any |x| > 1,

(6.28) φ(x)−H(x) +
1

4sA

x

|x|1+2s
= 0.

For this, we consider the case x > 1, since the case x < −1 is similar, and we

compute

φ(x)−H(x) +
1

4sA

x

|x|1+2s
= φ(x)− 1 +

1

4sA

x

|x|1+2s

= −
∫ +∞

x

φ′(t) dt+
1

4sA

x

|x|1+2s

= − 1

2A

∫ +∞

x

1

|t|1+2s
dt+

1

4sA

x

|x|1+2s

= − 1

4sA

x

|x|1+2s
+

1

4sA

x

|x|1+2s
= 0.

This proves (6.28).

In turn, (6.28) implies that, for |x| > 1,

|φ(x)−H(x)| = 1

4sA

1

|x|2s
6

C

1 + |x|2s
.

Moreover, for |x| < 1 we have

|φ(x)−H(x)| 6 2 6
4

1 + |x|2s
.

Putting together the last two inequalities and taking x = µa0y (recall (6.22)), we

obtain (6.26).

To show (6.27), we observe that, if |x| 6 1,∣∣∣∣φ(x)−H(x) +
1

4sA

x

|x|1+2s

∣∣∣∣ 6 2 +
1

4sA

1

|x|2s
6

(
2 +

1

4sA

)
1

|x|2s

6

(
2 +

1

4sA

)
1

|x|1+2s
.

(6.29)

Putting together (6.28) and (6.29), we obtain

(6.30)

∣∣∣∣φ(x)−H(x) +
1

4sA

x

|x|1+2s

∣∣∣∣ 6 (2 +
1

4sA

)
1

|x|1+2s
for any x ∈ R.

Now, we take x = µa0y in (6.30) and, recalling (6.22), we get∣∣∣∣φa0(y)−H(y) +
1

4sAµ2s
a0

y

|y|1+2s

∣∣∣∣ 6 (2 +
1

4sA

)
1

µ1+2s
a0

1

|y|1+2s
.

Since µa0 = (a0V
′′(0))−1/2s and V ′′(0) = 2A, we obtain the estimate in (6.27). �
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7. Decay improvement of the solution layer

Here we use the auxiliary transition layer constructed in Section 6 in order to

control the standard transition layer of our problem up to the desired order of

approximation. For this we need the following comparison principle, which can be

seen as a refinement of the one already given in Proposition 4.1:

Corollary 7.1. Let v ∈ L∞(R) ∩ C2(R) such that

lim
x→±∞

v(x) = 0.

Suppose that there exists a function d ∈ L∞(R) such that d(x) > δ > 0 for any x ∈
R and for some δ > 0, and

(7.1) Lsv = dv +M,

where M is a function that satisfies the following estimate

(7.2) |M(x)| 6 C

1 + |x|1+2s
for any x ∈ R,

for some constant C > 0.

Then, there exists a constant C > 0, depending on C, d, s and A (defined in (6.1))

such that

|v(x)| 6 C

1 + |x|1+2s
for any x ∈ R.

Proof. We consider the function φa defined in (6.22) (later we will choose a suitable

value of a). From (6.2), (6.3) and the hypothesis on M in (7.2), we have that there

exists a positive constant Ka (depending on a, s,A) such that

(7.3) |M(x)| 6 Kaφ
′
a(x) for any x ∈ R.

Now, we set w := v + cφ′a, for some positive constant c that will be specified later.

From (6.23) and (6.24) we deduce that

aLsφ
′
a = aV ′′a (φa)φ′a =

V ′′a (φa)

V ′′a (0)
φ′a =

V ′′(φa)

V ′′(0)
φ′a.

Therefore, from the properties of the potential V given in Proposition 6.2, we obtain

that

(7.4) |aLsφ′a| 6 CV φ′a

for some constant CV > 0 depending on V . Using (7.4), (7.1) and (7.3), we obtain

Lsw − dw = Lsv + cLsφ
′
a − dv − c d φ′a

6 Lsv − dv +
cCV
a

φ′a − c d φ′a

= M + c

(
CV
a
− d
)
φ′a

6 Kaφ
′
a + c

(
CV
a
− d
)
φ′a.
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Now, we choose a such that CV
a − d = −d2 , that is a = 2CV

d . Hence,

Lsw − dw 6
(
Ka −

c d

2

)
φ′a.

Finally, we choose c = 2Ka
d in such a way that Ka − c d

2 = 0, and therefore

Lsw − dw 6 0.

Since w satisfies the hypotheses of Proposition 4.1, we deduce from it that w > 0,

and so

(7.5) v > −2Ka

d
φ′a.

By similar computation for the function w := v−cφ′a, we obtain that Lsw−dw > 0,

which again, by Proposition 4.1, implies that w 6 0, and hence

(7.6) v 6
2Ka

d
φ′a.

Putting together (7.5) and (7.6) we obtain that |v| 6 2Ka
d φ′a, which implies the

desired result thanks to (6.3). �

Now, we improve the asymptotics for the layer solution u given in (5.1).

Proposition 7.2. Let u be the solution to (1.5). Then, the following estimate

holds: ∣∣∣∣u(x)−H(x) +
a0
2s

x

|x|1+2s

∣∣∣∣ 6 C

|x|1+2s
for any x ∈ R,

where a0 is a positive number such that (6.25) holds, and C is a positive constant

depending on s, a0 and A (defined in (6.1)).

Proof. We consider the function φa0 given by (6.22) and such that (6.25) is satisfied.

From Proposition 6.4 we know that φa0 satisfies estimate (6.27).

We define the function v := u− φa0 . We have that v ∈ L∞(R) ∩ C2(R) and

lim
x→±∞

v(x) = 0.

Moreover, v satisfies

Lsv = Lsu− Lsφa0 = W ′(u)− V ′a0(φa0)

= W ′(u)−W ′(φa0) +W ′(φa0)− V ′a0(φa0).
(7.7)

Now we claim that

(7.8) W ′(u)−W ′(φa0) +W ′(φa0)− V ′a0(φa0) = W ′′(0)v +O

(
1

1 + |x|4s

)
.

The proof uses the growth estimates (5.1) and (6.26), by distinguishing the cases in

which x < 0 (hence H(x) = 0) and x > 0 (hence H(x) = 1). To start, notice that,

if x < 0, we can expand W ′(u) and W ′(φa0) in the vicinity of 0 (that is H(x) = 0),

recall (5.1) and (6.26), and obtain

W ′(u)−W ′(φa0) = W ′′(0) (u− φa0) +O

(
1

1 + |x|4s

)
.

If x > 0, we can expand W ′(u) and W ′(φa0) in the vicinity of 1 and obtain the

same result.
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Similarly, when x < 0, using (6.26) we obtain

W ′(φa0)− V ′a0(φa0)

= W ′(0) +W ′′(0)φa0 − V ′a0(0)− V ′′a0(0)φa0 +O

(
1

1 + |x|4s

)
= O

(
1

1 + |x|4s

)
,

since W ′(0) = 0 = V ′a0(0) (see Proposition 6.2, i)) and W ′′(0) = V ′′a0(0) by (6.25).

Similarly, if x > 0, we obtain the same result by expanding V ′ and W ′ in the

vicinity of 1, and so (7.8) follows by collecting the estimates above.

Therefore, by (7.7) and (7.8), we have that the function v satisfies

Lsv = W ′′(0)v +M,

where W ′′(0) > 0 thanks to the hypotheses on W in (1.2), and M is a function

that satisfies (7.2). Hence, we can apply Corollary 7.1, thus obtaining that

|v(x)| 6 C

1 + |x|1+2s

and so

(7.9) |u(x)− φa0(x)| 6 C

1 + |x|1+2s
.

Putting together (7.9) and (6.27) we obtain the desired estimate. �

8. Proof of Theorem 1.1

The completion of the proof of Theorem 1.1 uses a system of sub and superso-

lutions close in spirit to the one in [11]: nevertheless it is necessary in our case to

keep track of the different scaling factor induced by the operator Ls, which produces

different orders of ε in the expansions.

In order to prove Theorem 1.1 we consider the solution (xi(t))i=1,...,N to the

system 
ẋi = γ

−σ(t, xi) +
∑
j 6=i

xi − xj
2s |xi − xj |1+2s

 in (0,+∞),

xi(0) = x0i ,

(8.1)

where γ is given in (1.9) and x0i are given for any i = 1, . . . , N . Indeed, from [9],

we have that there exists a unique solution6 to (8.1).

6More precisely, the existence and uniqueness of solution for (8.1) follows from the classical

ODE results once a lower bound on the mutual distance is obtained. Such bound is given in
Lemma 8.2 of [9], according to which

|xi(t)− xj(t)| > d0e−Ct,

for any i 6= j, where d0 is the minimal initial distance and C > 0 depends on γ and σ.

As a technical remark, we observe that the proof of Lemma 8.2 of [9] does not make use
of Assumption (H4) on page 792 there, and therefore we can apply such result in the present
framework. Moreover, once the mutual distance is bounded from below, we easily obtain bounds

for ẋi and ẍi.
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8.1. Construction of sub and supersolutions. To prove existence and unique-

ness of the solution to (1.4) we construct suitable sub and supersolutions. We

consider an auxiliary7 parameter δ > 0 and define (xi(t))i=1,...,N to be the solution

of the system
ẋi = γ

−δ − σ(t, xi) +
∑
j 6=i

xi − xj
2s |xi − xj |1+2s

 in (0,+∞),

xi(0) = x0i − δ.

(8.2)

Moreover, we set

(8.3) ci(t) := ẋi(t)

and

(8.4) σ̃ :=
δ + σ

β
, where β = W ′′(0) was introduced in (1.11).

We also define

(8.5) vε(t, x) := ε2sσ̃(t, x) +

N∑
i=1

{
u

(
x− xi(t)

ε

)
− ε2sci(t)ψ

(
x− xi(t)

ε

)}
,

where u is given in Theorem 5.1 and ψ in Theorem 5.2. The asymptotics of vε(t, x) is

compatible with the convex envelope behavior in (1.13), according to the following

observation:

Lemma 8.1. For any (t, x) ∈ [0, T )×R, we have that

lim
δ→0+

lim sup
(t′,x′)→(t,x)

ε→0

vε(t
′, x′) 6 (v0)∗(t, x).

Proof. We define H∗(x) := H(x) for any x 6= 0, and H∗(0) := 1. We point out that

(8.6) H 6 H∗ and lim sup
r′→r

H∗(r′) 6 H∗(r).

Now we prove that

(8.7)

N∑
i=1

H∗
(
x− xi(t)

)
= (v0)∗(t, x).

For this, we use the definitions in (1.7) and (1.12) to write

(8.8) (v0)∗(t, x) = lim sup
(t′,x′)→(t,x)

N∑
i=1

H(x′ − xi(t′)).

Moreover, we observe that if x and t are such that x − xi(t) 6= 0 for any i ∈
{1, . . . , N}, then (8.7) is obvious by the continuity of the functions. So, we may

suppose that x− xi0(t) = 0 for some i0. Since the xi(t) are separated, this implies

7 We will fix δ > 0 and suppose that ε is small also possibly in dependence of δ. At the end,
after having performed the limit in ε, we will have the freedom of taking δ as small as we wish,

see Lemma 8.1 for this.
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that x− xi(t) 6= 0 for any i 6= i0 hence continuity holds when i 6= i0. That is, (8.8)

gives that

(v0)∗(t, x) = lim sup
(t′,x′)→(t,x)

H(x′ − xi0(t′)) +
∑
i6=i0

H(x− xi(t))

= lim sup
(t′,x′)→(t,x)

H(x′ − xi0(t′)) +
∑
i 6=i0

H∗(x− xi(t)).(8.9)

Now we specialize a sequence, by choosing x′ = x̃n := x+ e−n and t′ = t̃n := t. In

this way,

x̃n − xi0(t̃n) = x− xi0(t) + e−n = e−n > 0

hence

H(x̃n − xi0(t̃n)) = 1 = H∗(0) = H∗(x− xi0(t)),

and so

lim sup
(t′,x′)→(t,x)

H(x′ − xi0(t′)) > lim sup
n→+∞

H(x̃n − xi0(t̃n))

= H∗(x− xi0(t)).

By plugging this into (8.9), we obtain

(8.10) (v0)∗(t, x) > H∗(x− xi0(t)) +
∑
i6=i0

H∗(x− xi(t)) =

N∑
i=1

H∗(x− xi(t)).

On the other hand, from (8.8) and (8.6),

(v0)∗(t, x) 6
N∑
i=1

lim sup
(t′,x′)→(t,x)

H(x′ − xi(t′))

6
N∑
i=1

lim sup
(t′,x′)→(t,x)

H∗(x′ − xi(t′))

6
N∑
i=1

H∗(x− xi(t)).(8.11)

By collecting (8.10) and (8.11), we complete the proof of (8.7).

Now we notice that

(8.12) lim sup
(t′,x′)→(t,x)

ε→0

vε(t
′, x′) = lim sup

(t′,x′)→(t,x)
ε→0

N∑
i=1

u

(
x′ − xi(t′)

ε

)
,

since the other terms in (8.5) vanish with ε. Fixed x and t, we let i0 such that

(8.13) x ∈
[
xi0(t), xi0+1(t)

)
and we define

ϑ := min
i6=i0
|x− xi(t)|.

By construction ϑ > 0 and we will be free to suppose that ε, |t′− t| and |x′−x| are

much smaller than θ.

Now we define

(8.14) x′′ = x′ + |x′ − x|+
√
ε+

√
|t′ − t|.
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Notice that x′′ is a sequence constructed from the original sequence (t′, x′, ε) →
(t, x, 0) therefore x′′ approaches x. Since u is increasing, we have that

(8.15) u

(
x′ − xi(t′)

ε

)
6 u

(
x′′ − xi(t′)

ε

)
.

More precisely, from (8.14) and (8.13),

x′′ − xi0(t) = (x′ − x) + x− xi0(t) + |x′ − x|+
√
ε+

√
|t′ − t|

> x− xi0(t) +
√
ε+

√
|t′ − t|

>
√
ε+

√
|t′ − t|.

(8.16)

Furthermore, if i 6= i0,

|xi(t)− x′′| =
∣∣xi(t)− x+ (x− x′)− |x′ − x| −

√
ε−

√
|t′ − t|

∣∣
> θ − 2|x′ − x| −

√
ε−

√
|t′ − t|

>
θ

2
.

This and (8.16) imply that, for every i ∈ {1, . . . , N},

(8.17) |x′′ − xi(t)| >
√
ε+

√
|t′ − t|.

By the regularity theory for ODEs, we have that∣∣xi(t′)− xi(t)∣∣ = O(|t′ − t|)

hence (8.17) gives that

|x′′ − xi(t′)| >
√
ε+

√
|t′ − t| −O(|t′ − t|) >

√
ε,

since |t′ − t| is an infinitesimal sequence. As a consequence of this, we have that∣∣∣∣x′′ − xi(t′)ε

∣∣∣∣ > 1√
ε
,

that is a diverging sequence. Therefore, recalling (5.1), and observing thatH(x/ε) =

H(x) for any x ∈ R, since ε > 0, we obtain

lim sup
(t′,x′)→(t,x)

ε→0

u

(
x′′ − xi(t′)

ε

)
−H

(
x′′ − xi(t′)

)
= lim sup

(t′,x′)→(t,x)
ε→0

u

(
x′′ − xi(t′)

ε

)
−H

(
x′′ − xi(t′)

ε

)
= 0.

Using this, (8.12) and (8.15) we obtain

lim sup
(t′,x′)→(t,x)

ε→0

vε(t
′, x′) 6 lim sup

(t′,x′)→(t,x)
ε→0

N∑
i=1

u

(
x′′ − xi(t′)

ε

)

6
N∑
i=1

lim sup
(t′,x′)→(t,x)

ε→0

u

(
x′′ − xi(t′)

ε

)

6
N∑
i=1

lim sup
(t′,x′)→(t,x)

ε→0

H
(
x′′ − xi(t′)

)
.(8.18)
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Now we use the ODE theory to notice that |xi(t) − xi(t)| 6 O(δ), since both the

forcing term and the initial data of the two equations are δ-close to each other

(compare (1.8) and (8.2)). In particular

x′′ − xi(t′) 6 x′′ − xi(t′) +O(δ)

and so, using the fact that H is monotone,

H
(
x′′ − xi(t′)

)
6 H

(
x′′ − xi(t′) +O(δ)

)
.

This, (8.18) and (8.6) imply that

lim
δ→0+

lim sup
(t′,x′)→(t,x)

ε→0

vε(t
′, x′) 6 lim

δ→0+

N∑
i=1

lim sup
(t′,x′)→(t,x)

ε→0

H
(
x′′ − xi(t′) +O(δ)

)
6 lim

δ→0+

N∑
i=1

lim sup
(t′,x′)→(t,x)

ε→0

H∗
(
x′′ − xi(t′) +O(δ)

)
6 lim

δ→0+

N∑
i=1

H∗
(
x− xi(t) +O(δ)

)
6

N∑
i=1

H∗
(
x− xi(t)

)
.

The desired result then follows from (8.7). �

In the following proposition, we control the initial condition of vε:

Proposition 8.2. Assume that (1.2), (1.3) and (1.10) hold. Then, there exists δ0 >

0 such that, for every 0 < δ 6 δ0, one has

(8.19) vε(0, x) > v0ε (x) for any x ∈ R,

for any ε > 0 sufficiently small, where v0ε is defined in (1.10).

Proof. We choose

0 < δ < min
i=1,...,N−1

(x0i+1 − x0i ).

In this way we have that

x0i < xi+1(0) < x0i+1 for any i = 1, . . . , N − 1.

As a consequence of this and of the fact that u is increasing, we have that

(8.20) u

(
x− xi(0)

ε

)
> u

(
x− x0i
ε

)
.

Also, using the fact that

lim
x→±∞

ψ(x) = 0

due to (5.2), we can choose R > 0 so large that

(8.21)
δ

β
>

(
N∑
i=1

|ci(0)|

)
sup

R\(−R,R)

|ψ|.
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Now, in order to prove (8.19), we distinguish the points x that are very close to xi(0)

for some i ∈ {1, . . . , N} and the points that are sufficiently separated. For this,

suppose first that

(8.22) |x− xi(0)| > εR for every i = 1, . . . , N.

Then
(
x− xi(0)

)
/ε ∈ R \ (−R,R) and so, by (8.21),

(8.23)

∣∣∣∣∣
N∑
i=1

ci(0)ψ

(
x− xi(0)

ε

)∣∣∣∣∣ 6 δ

β
.

So, recalling (8.5), (8.20), (8.4) and (1.10),

vε(0, x) = ε2sσ̃(0, x) +

N∑
i=1

{
u

(
x− xi(0)

ε

)
− ε2sci(0)ψ

(
x− xi(0)

ε

)}

>
ε2s

β
(δ + σ(0, x)) +

N∑
i=1

{
u

(
x− x0i
ε

)
− ε2sci(0)ψ

(
x− xi(0)

ε

)}

= v0ε (x) + ε2s

(
δ

β
−

N∑
i=1

ci(0)ψ

(
x− xi(0)

ε

))
,

which, together with (8.23), implies that

vε(0, x) > v0ε (x).

This proves (8.19) in case (8.22) holds true.

Now, conversely, suppose that there exists an index i0 ∈ {1, . . . , N} such that

|x− xi0(0)| < εR. Then, in this case, the fact that u is increasing implies that

(8.24) u

(
x− xi0(0)

ε

)
> u(−R) > 0,

and

(8.25) u

(
x− x0i0

ε

)
= u

(
x− xi0(0)− δ

ε

)
6 u

(
R− δ

ε

)
.

Hence, from (8.25) and (5.1),

u

(
x− x0i0

ε

)
6

(
Cε

δ

)2s

for some C > 0, when ε is small enough. Using this and (8.24) we conclude that,

for ε sufficiently small,

u

(
x− xi0(0)

ε

)
> u(−R)

>
u(−R)

2
+

(
Cε

δ

)2s

+ ε2s‖ψ‖L∞(R)

N∑
i=1

|ci(0)|

> u

(
x− x0i0

ε

)
+

N∑
i=1

ε2sci(0)ψ

(
x− xi(0)

ε

)
.
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Hence, using this estimate and (8.20),

vε(0, x)

= ε2sσ̃(0, x) +

N∑
i=1

{
u

(
x− xi(0)

ε

)
− ε2sci(0)ψ

(
x− xi(0)

ε

)}

=
ε2s

β
(δ + σ(0, x)) +

∑
16i6N
i6=i0

u

(
x− xi(0)

ε

)
+ u

(
x− xi0(0)

ε

)
−

N∑
i=1

ε2sci(0)ψ

(
x− xi(0)

ε

)

>
ε2s

β
(δ + σ(0, x)) +

∑
16i6N
i6=i0

u

(
x− x0i
ε

)
+ u

(
x− x0i0

ε

)

=
ε2s

β
(δ + σ(0, x)) +

N∑
i=1

u

(
x− x0i
ε

)

=
ε2sδ

β
+ v0ε (x)

> v0ε (x).

This concludes the proof of (8.19) in this case too. �

Now, we set

(8.26) ũi := u

(
x− xi(t)

ε

)
−H

(
x− xi(t)

ε

)
,

where H is the Heaviside function, and

ψi := ψ

(
x− xi(t)

ε

)
.

Let also

(8.27) Iε := ε (vε)t +
1

ε2s

(
W ′(vε)− ε2sLsvε − ε2sσ

)
.

Our goal is to estimate Iε for small ε. Functions that are bounded by ũi, or ψi, up

to multiplicative constants, will be denoted by O(ũi), or O(ψi), respectively. The

reason for this notation is that, when x 6= xi(t), both ũi and ψi are infinitesimal

for small ε, in the light of (5.1) and (5.2). With this setting, we have the following

estimate:

Lemma 8.3. Assume that (1.2), (1.3) and (1.10) hold. Then, for every i0 ∈
{1, . . . , N}, we have

Iε = ei0ε + (βσ̃ − σ) +O(ũi0)

η ci0 + σ̃ +
∑

16i6N
i6=i0

ũi
ε2s

 ,

where β is given in (1.11), σ̃ in (8.4), η in (5.3), and the error ei0ε is given by

(8.28) ei0ε := O(ε2s) +
∑

16i6N
i6=i0

O(ψi) +
∑

16i6N
i6=i0

O(ũi) +
∑

16i6N
i6=i0

O

(
ũ2i
ε2s

)
.
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Proof. We compute Iε piece by piece. First of all, by differentiating (8.5) we obtain

(vε)t = O(ε2s) +

N∑
i=1

∂

∂t
u

(
x− xi(t)

ε

)
− ε2s

N∑
i=1

∂

∂t

[
ci(t)ψ

(
x− xi(t)

ε

)]

= O(ε2s)−
N∑
i=1

ẋi(t)

ε
u′
(
x− xi(t)

ε

)
− ε2s

N∑
i=1

[
ċi(t)ψ

(
x− xi(t)

ε

)
− ẋi(t)

ε
ci(t)ψ

′
(
x− xi(t)

ε

)]
.

That is, from (8.3), multiplying by ε and dropping the explicit dependence on t for

short, we obtain

(8.29)

ε(vε)t = O(ε1+2s)−
N∑
i=1

ciu
′
(
x− xi
ε

)
−

N∑
i=1

ε1+2sċiψi +

N∑
i=1

ε2sci
2ψ′
(
x− xi
ε

)
.

Now we notice that we can bound ψ and ψ′ thanks to Theorem 5.2. Moreover, ċi
is bounded for every i = 1, . . . , N (recall the bound on ẍi discussed in the footnote

of page 30). Therefore (8.29) reduces to

(8.30) ε(vε)t = O(ε2s)−
N∑
i=1

ciu
′
(
x− xi
ε

)
.

Also, we use the periodicity of W (to remove the Heaviside function inside the

potential) and a Taylor expansion in the vicinity of ũi0 , to calculate:

W ′(vε) = W ′

(
ε2sσ̃ +

N∑
i=1

u

(
x− xi
ε

)
− ε2s

N∑
i=1

ciψ

(
x− xi
ε

))

= W ′
(
ε2sσ̃ +

N∑
i=1

ũi − ε2s
N∑
i=1

ciψi

)
= W ′

(
ũi0 + ε2sσ̃ +

∑
16i6N
i6=i0

ũi − ε2s
N∑
i=1

ciψi

)

= W ′(ũi0) +W ′′(ũi0)
(
ε2sσ̃ +

∑
16i6N
i6=i0

ũi − ε2s
N∑
i=1

ciψi

)
+O(ε4s) +

∑
16i6N
i6=i0

O(ũ2i ).

(8.31)

Now we recall that Lsσ is bounded thanks to (1.3). Hence we use the scaling

properties of Ls, (1.5) and (5.2) to evaluate the following expression:

ε2sLsvε = ε2sLs

(
ε2sσ̃ +

N∑
i=1

u

(
x− xi
ε

)
− ε2s

N∑
i=1

ciψ

(
x− xi
ε

))

= O(ε4s) +

N∑
i=1

Lsu

(
x− xi
ε

)
− ε2s

N∑
i=1

ciLsψ

(
x− xi
ε

)

= O(ε4s) +

N∑
i=1

W ′(ũi)− ε2s
N∑
i=1

ci

[
W ′′(ũi)ψi + u′

(
x− xi
ε

)
+ η
(
W ′′(ũi)−W ′′(0)

)]
.

(8.32)
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So we sum up (8.30), (8.31) and (8.32): recalling (8.27) and noticing that the two

terms involving u′ cancel, we obtain that

Iε = ε (vε)t + ε−2sW ′(vε)− Lsvε − σ

= ε−2sW ′(ũi0) +W ′′(ũi0)
(
σ̃ + ε−2s

∑
i6=i0

ũi −
∑

16i6N

ciψi

)
−ε−2s

∑
16i6N

W ′(ũi) +
∑

16i6N

ci
[
W ′′(ũi)ψi + η

(
W ′′(ũi)−W ′′(0)

)]
−σ +O(ε2s) +

∑
i 6=i0

O(ε−2sũ2i ).

Now we collect some terms in the previous expression, namely we observe that

ε−2sW ′(ũi0)− ε−2s
∑

16i6N

W ′(ũi) = −ε−2s
∑
i 6=i0

W ′(ũi)

and that

−W ′′(ũi0)
∑

16i6N

ciψi +
∑

16i6N

ciW
′′(ũi)ψi =

∑
i 6=i0

ci

(
W ′′(ũi)−W ′′(ũi0)

)
ψi.

Therefore we obtain

Iε = −ε−2s
∑
i6=i0

W ′(ũi) +
∑
i 6=i0

ci

(
W ′′(ũi)−W ′′(ũi0)

)
ψi

+W ′′(ũi0)
(
σ̃ + ε−2s

∑
i 6=i0

ũi

)
+
∑

16i6N

ciη
(
W ′′(ũi)−W ′′(0)

)
−σ +O(ε2s) +

∑
i6=i0

O(ε−2sũ2i ).

Now, since W ′(0) = 0, we use a Taylor expansion around 0 to see that

ε−2sW ′(ũi) = ε−2sW ′′(0)ũi +O(ε−2sũ2i )

so that

Iε = −ε−2sW ′′(0)
∑
i 6=i0

ũi +
∑
i 6=i0

ci

(
W ′′(ũi)−W ′′(ũi0)

)
ψi

+W ′′(ũi0)
(
σ̃ + ε−2s

∑
i 6=i0

ũi

)
+
∑

16i6N

ciη
(
W ′′(ũi)−W ′′(0)

)
−σ +O(ε2s) +

∑
i 6=i0

O(ε−2sũ2i ).
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Now it is convenient to add and subtract the term W ′′(0)σ̃ and collect all the terms

containing the common factor
(
W ′′(ũi0)−W ′′(0)

)
. We get

Iε =
(
W ′′(ũi0)−W ′′(0)

)
ε−2s

∑
i6=i0

ũi +
∑
i 6=i0

ci

(
W ′′(ũi)−W ′′(ũi0)

)
ψi

+
(
W ′′(ũi0)−W ′′(0)

)
σ̃ +W ′′(0)σ̃

+
∑
i 6=i0

ciη
(
W ′′(ũi)−W ′′(0)

)
+ ci0η

(
W ′′(ũi0)−W ′′(0)

)
−σ +O(ε2s) +

∑
i 6=i0

O(ε−2sũ2i ).

Hence, since
(
W ′′(ũi0)−W ′′(0)

)
= O(ũi0), we have

Iε = O(ũi0)
(
ε−2s

∑
i 6=i0

ũi + σ̃ + ci0η
)

+
∑
i 6=i0

ci

(
W ′′(ũi)−W ′′(ũi0)

)
ψi +W ′′(0)σ̃

+
∑
i6=i0

ciη
(
W ′′(ũi)−W ′′(0)

)
−σ +O(ε2s) +

∑
i 6=i0

O(ε−2sũ2i ).

Now, clearly,

ciη
(
W ′′(ũi)−W ′′(0)

)
= O(ũi) and ci

(
W ′′(ũi)−W ′′(ũi0)

)
ψi = O(ψi),

thus we conclude that

Iε = O(ũi0)
(
ε−2s

∑
i 6=i0

ũi + σ̃ + ci0η
)

+
∑
i 6=i0

O(ψi) +W ′′(0)σ̃

+
∑
i 6=i0

O(ũi)− σ +O(ε2s) +
∑
i6=i0

O(ε−2sũ2i ).

This ends the proof of the desired result, since β = W ′′(0) (recall (1.11)). �

Now we can state the following:

Proposition 8.4. Assume that (1.2), (1.3) and (1.10) hold. Then, there exists

δ0 > 0 such that, for any 0 < δ 6 δ0 and T > 0, we have

(vε)t >
1

ε

(
Lsvε −

1

ε2s
W ′(vε) + σ

)
in (0, T )×R,

for ε > 0 sufficiently small.

Proof. Our goal is to show that for every x ∈ R

(8.33) Iε > 0

for ε small enough: this indeed plainly implies the desired result (recall the definition

of Iε in (8.27)).
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For this, we make a preliminary observation: recalling the definition of ũi in (8.26)

and using Proposition 7.2, we obtain that, for any i ∈ {1, . . . , N},

(8.34)

∣∣∣∣ũi +
ε2s

2sW ′′(0)

x− xi(t)
|x− xi(t)|1+2s

∣∣∣∣ 6 C ε1+2s

|x− xi(t)|1+2s
.

Now we divide the proof of (8.33) by dealing with two separate cases.

Case 1: Suppose that there exists i0 ∈ {1, . . . , N} such that

(8.35) |x− xi0(t)| 6 ε
1

2+2s .

Therefore, since the xi’s are well-separated, for ε sufficiently small we have that

(8.36) |x− xi(t)| > ϑ > 0, for any i 6= i0,

where ϑ is a constant independent of ε.

Hence, thanks to (8.34) and (8.36),∣∣∣∣∣∣
∑
i 6=i0

(
ũi
ε2s

+
1

2sW ′′(0)

x− xi(t)
|x− xi(t)|1+2s

)∣∣∣∣∣∣ 6 C ε1+2s

ε2s

∑
i 6=i0

1

|x− xi(t)|1+2s
6 C ε.

Therefore, from Lemma 8.3 we deduce that

Iε = ei0ε + βσ̃ − σ +O(ũi0)

η ci0 + σ̃ +
∑
i6=i0

ũi
ε2s


= ei0ε + βσ̃ − σ +O(ũi0)

η ci0 + σ̃ − 1

2sW ′′(0)

∑
i 6=i0

x− xi(t)
|x− xi(t)|1+2s

+O(ε).

(8.37)

Now, we Taylor expand the function x−xi(t)
|x−xi(t)|1+2s for x in the vicinity of the

point xi0(t), and we use (8.35) to get∣∣∣∣∣∣
∑
i 6=i0

x− xi(t)
|x− xi(t)|1+2s

−
∑
i 6=i0

xi0(t)− xi(t)
|xi0(t)− xi(t)|1+2s

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i 6=i0

(
1

|ξ − xi(t)|1+2s
− (1 + 2s)

(ξ − xi(t))2

|ξ − xi(t)|3+2s

)
(x− xi0(t))

∣∣∣∣∣∣
6
∑
i 6=i0

2 + 2s

|ξ − xi(t)|1+2s
ε

1
2+2s

6 C ε
1

2+2s ,

(8.38)

where ξ is a suitable point lying on the segment joining x to xi0(t) (and hence

|ξ − xi(t)| > ϑ/2 thanks to (8.35)). Therefore, using (8.38) in (8.37), we have

Iε = ei0ε + βσ̃ − σ +O(ũi0)

η ci0 + σ̃ − 1

2sW ′′(0)

∑
i 6=i0

xi0(t)− xi(t)
|xi0(t)− xi(t)|1+2s


+O(ε) +O(ε

1
2+2s ).

(8.39)
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Now, we compute the term between parenthesis. From the definitions of η, ci0 and

σ̃ given in (5.3), (8.3) and (8.4) respectively, and recalling (1.9), we obtain

η ci0 + σ̃ − 1

2sW ′′(0)

∑
i 6=i0

xi0(t)− xi(t)
|xi0(t)− xi(t)|1+2s

=
1

γ W ′′(0)
ẋi0(t) +

δ

W ′′(0)
+
σ(t, x)

W ′′(0)
− 1

2sW ′′(0)

∑
i 6=i0

xi0(t)− xi(t)
|xi0(t)− xi(t)|1+2s

=
1

W ′′(0)

 ẋi0(t)

γ
+ δ + σ(t, xi0(t))− 1

2s

∑
i 6=i0

xi0(t)− xi(t)
|xi0(t)− xi(t)|1+2s


+
σ(t, x)− σ(t, xi0(t))

W ′′(0)
.

(8.40)

Recalling (8.2), we have that

ẋi0(t)

γ
+ δ + σ(t, xi0(t))− 1

2s

∑
i6=i0

xi0(t)− xi(t)
|xi0(t)− xi(t)|1+2s

= 0,

and so the term in parenthesis in (8.40) vanishes. Therefore (8.40) becomes

η ci0 + σ̃ − 1

2sW ′′(0)

∑
i 6=i0

xi0(t)− xi(t)
|xi0(t)− xi(t)|1+2s

=
σ(t, x)− σ(t, xi0(t))

W ′′(0)

= O(x− xi0(t))

= O(ε
1

2+2s ),

thanks to (1.3) and (8.35). Hence (8.39) reads

(8.41) Iε = ei0ε + βσ̃ − σ +O(ε
1

2+2s ) +O(ε) +O(ε
1

2+2s ).

Also, in the light of (8.4), we see that

(8.42) βσ̃ − σ = δ > 0.

Now, we claim that

(8.43) the error ei0ε (that was defined in (8.28)) tends to zero as ε→ 0.

For this, we notice that ψi = ψ
(
x−xi(t)

ε

)
, with i 6= i0, tends to zero because of

the behavior of the corrector at infinity (recall (5.2) and (8.36)). Moreover, thanks

to (5.1) and (8.36) we have that, for i 6= i0,

ũi = u

(
x− xi(t)

ε

)
−H

(
x− xi(t)

ε

)
= O

(
ε2s

|x− xi(t)|2s

)
= O(ε2s)

and
(ũi)

2

ε2s
=
O(ε4s)

ε2s
= O(ε2s),

thus proving (8.43).

Hence, from (8.41), (8.42) and (8.43) we obtain that for ε sufficiently small

Iε >
δ

2
> 0,

which implies (8.33) in this case.
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Case 2: Suppose that |x− xi(t)| > ε
1

2+2s for every i ∈ {1, . . . , N}. In this case, we

can fix i0 arbitrarily, say i0 := 1 for concreteness. We use (8.34) to obtain∣∣∣∣∣∣
∑
i 6=i0

(
ũi
ε2s

+
1

2sW ′′(0)

x− xi(t)
|x− xi(t)|1+2s

)∣∣∣∣∣∣ 6 C ε1+2s

ε2s

∑
i 6=i0

1

|x− xi(t)|1+2s

6 C
ε

ε
1+2s
2+2s

= C ε
1

2+2s .

Therefore, from Lemma 8.3 and the definition of σ̃ in (8.4) we have

(8.44) Iε = ei0ε +δ+O(ũi0)

η ci0 + σ̃ − 1

2sW ′′(0)

∑
i 6=i0

x− xi(t)
|x− xi(t)|1+2s

+O(ε
1

2+2s ).

We notice that, for any i 6= i0,

(8.45)

∣∣∣∣ x− xi(t)
|x− xi(t)|1+2s

∣∣∣∣ 6 1

|x− xi(t)|2s
6

1

ε
2s

2+2s

= O(ε−
s

1+s ).

Notice that this term is divergent as ε tends to zero. From (8.45) we conclude that

η ci0 + σ̃ − 1

2sW ′′(0)

∑
i 6=i0

x− xi(t)
|x− xi(t)|1+2s

= O(ε−
s

1+s ),

since the other terms are bounded. By plugging this into (8.44) we obtain

(8.46) Iε = ei0ε + δ +O(ũi0) ·O(ε−
s

1+s ) +O(ε
1

2+2s ).

Now we observe that for every i ∈ {1, . . . , N},
(8.47)

ũi = u

(
x− xi(t)

ε

)
−H

(
x− xi(t)

ε

)
= O

(
ε2s

|x− xi(t)|2s

)
= O

(
ε2s

ε
2s

2+2s

)
= O

(
ε
s(1+2s)

1+s

)
.

As a consequence

(8.48)
(ũi)

2

ε2s
= O

(
ε

2s2

1+s

)
and O(ũi0) ·O(ε−

s
1+s ) = O

(
ε

2s2

1+s

)
.

By inserting this into (8.46) we get

(8.49) Iε = ei0ε + δ +O(εα),

for some α > 0. Now we check that

(8.50) the error term ei0ε tends to zero as ε→ 0.

For this, we remark that, in this case,

|x− xi(t)|
ε

>
ε

1
2+2s

ε
= ε−

1+2s
2+2s ,

which diverges for small ε. Therefore, for x fixed as in the assumption of Case 2,

we have that

ψi(x) = ψ

(
x− xi(t)

ε

)
−→ 0

as ε → 0, due to the infinitesimal behavior of ψ at infinity (see (5.2)). Using this,

(8.47), (8.48) and the definition of the error term given in (8.28), we obtain (8.50).
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Hence, by using (8.50) inside (8.49) and recalling that δ > 0, we conclude that

Iε >
δ

2
> 0,

for ε sufficiently smooth, thus proving (8.33) in this case too. �

8.2. Existence and uniqueness of the solution. We observe that, for ε suffi-

ciently small, the initial condition v0ε given in (1.10) satisfies

−1 6 v0ε 6 N + 1.

Moreover, setting

Kε :=
1

ε1+2s
‖W ′‖L∞(R) +

1

ε
‖σ‖L∞(R),

we have that the functions

uε(t, x) := −1−Kεt and uε(t, x) := N + 1 +Kεt

are respectively sub and supersolutions of (1.4) in [0,+∞)×R. Hence, there exists

a unique, continuous, solution vε of (1.4) in [0,+∞) × R, thanks to the Perron’s

method and the comparison principle (see [4]).

8.3. Convergence. In Subsection 8.1 we constructed a supersolution vε of (1.4)

in [0, T ) × R. In a similar way, one can build also a subsolution vε (defined as

vε in (8.5) but with δ < 0). Notice that, from Proposition 8.2 (and its analogue

for vε), we have that at the initial time the following holds for every x ∈ R:

vε(0, x) 6 vε(0, x) 6 vε(0, x).

Then, from the comparison principle, we obtain

vε(t, x) 6 vε(t, x) 6 vε(t, x), t ∈ [0, T ), x ∈ R.

Passing to the limit as ε → 0, using the continuity of vε and recalling Lemma 8.1

(and its analogue for vε), and taking δ as small as we wish in the end, we get (1.13)

and (1.14) in [0, T ) × R for any fixed T > 0, and thus in [0,+∞) × R since T is

arbitrary. This concludes the proof of Theorem 1.1.
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